Are There Alternatives to Semiconductor Chips? (2024)

Are There Alternatives to Semiconductor Chips? (1)By Nidhi DhullReviewed by Lexie CornerMay 21 2024

Semiconductor chips, which have thus far dominated the electronics industry, are now reaching practical and fundamental limits. Novel alternatives are therefore required to overcome these limits and allow the continuity of Moore’s law.

Are There Alternatives to Semiconductor Chips? (2)

Image Credit:aslysun/Shutterstock.com

Materials beyond silicon (Si), such as Group III-V and other nanomaterials, are being aggressively integrated into electronics. Two-dimensional (2D) materials like graphene and transition metal dichalcogenides (TMDs) also exhibit great potential in nanoscale devices.1

This article explores novel classes of third-generation semiconductors, organic semiconductors, flexible electronics, and other potential alternatives to conventional semiconductor chips.1,2

Emerging Materials for Semiconductor Devices

Semiconductor chips are critical components in electronic devices, medical equipment, and sensors.2 Accordingly, the conventional Si complementary metal-oxide-semiconductor (CMOS) technology has been scaled to high-performance fin field-effect transistors (FinFETs). However, further performance enhancement is plateauing with the continued use of Si.1

With rising environmental concerns, there is a global shift toward energy-efficient electronics.2 The processing of traditional Si-based electronics is problematic due to the use of toxic and non-recyclable components and the release of hazardous by-products.3

Thus, future sustainable electronics scaling requires alternative materials, such as wide bandgap semiconductors, 2D materials, TMDs, organic semiconductors, quantum dots, and other nanomaterials.

Beyond Silicon: Gallium Nitride and Silicon Carbide

Third-generation semiconductors (with a bandgap greater than 2.3 electron volts), such as silicon carbide (SiC), gallium nitride (GaN), zinc oxide, aluminum nitride, and diamond, are crucial in fulfilling the rising demand for alternatives to Si.

They exhibit superior thermal conductivity, high bonding energy, rapid electron mobility, and robust breakdown field strength. Their high-temperature endurance and resistance to radiation are added advantages.2

Among various third-generation semiconductors, GaN and SiC are the most promising alternatives to Si chips. They boast a bandgap three times that of their first and second-generation counterparts and can handle high-voltage and high-power applications.

SiC metal-oxide-semiconductor field-effect transistors (MOSFETs) and GaN high-electron-mobility transistors (HEMTs) are replacing conventional chips in high-power and high-frequency applications, respectively.2

Organic Semiconductors and Flexible Electronics

Organic large-area electronics are rapidly advancing as a flexible and customizable alternative to conventional semiconductor chips. Although Si can be processed into solution form for printing, it requires a high annealing temperature, making it incompatible with most flexible and organic substrates.

Thus, organic semiconductors like fullerenes and carbon nanotubes (CNTs) are finding novel applications in flexible electronics.3

Organic semiconductors exhibit high compatibility with economical printing technologies and recyclable-friendly flexible substrates. These materials can be printed/coated/deposited on multiple surfaces to create flexible, economical, sustainable, scalable, and lightweight devices, such as organic light-emitting diode (LED) displays, large solar panels, and large-area sensors.3

Two-Dimensional Materials

In 2004, graphene emerged as the first 2D material. It rapidly gained popularity due to its very high mobility and excellent electrostatic control in the device.1,4 The recent discovery of unconventional intrinsic high-temperature superconductivity in graphene superlattices has resulted in the development of Josephson junctions and tunneling transistors within a single material.4

Related Stories

  • Semiconductor Manufacturing By Country: The Industry's Biggest Players
  • There Are So Many Reasons Not To Miss Pittcon - Here Are Just A Few
  • A Guide to Semiconductor Chip Layers

Other emerging 2D materials, such as metal sulfides, tellurides, and selenides, also offer numerous benefits over traditional semiconductors and carbon-based materials.1 For instance, TMDs like MoS2 possess adaptable chemistry and tunable electrical characteristics, ranging from insulating to metallic, depending on their composition, symmetry, and number of layers.4

Quantum Dots and Nanomaterials

Nanomaterials are another potential substitute for conventional semiconductors due to their well-known capacity for chemical customization. For instance, the quantum confinement of electrons in semiconductor nanocrystals makes their color extremely controllable. They are, therefore, suitable for use in future nanoelectronic and optoelectronic devices, such as LEDs and solar cells.5

Some nanomaterials can also transform into quantum dots (QDs), which are nano-sized three-dimensional (commonly called zero-dimensional) structures. The physics of semiconducting QDs is complex, but their size-dependent emission and tunable bandgaps give them great potential for use in photonics and quantum computing.5

Advantages and Applications

The proposed alternatives to semiconductor chips find numerous applications in emerging sectors, such as 6G, Industry 4.0, and artificial intelligence (AI). Photovoltaic power generation and LED-based lighting can also significantly benefit from such materials, thereby accelerating the sustainable development of energy resources.2

Third-generation semiconductors can reduce over 50 % of energy losses and 75 % of equipment volume in strategic applications like solar energy, automotive manufacturing, smart grids, and broadband communications. SiC is widely used in high-speed rail, power transmission, and new energy vehicles, while GaN offers promising prospects in microwave applications and data centers.2

Organic semiconductors are used in electronic devices such as photodiodes, LEDs, FETs, solar cells, and thin-film transistors. They are also employed in healthcare as biosensors and comfortable wearable devices due to their high compatibility with the human body.3

2D semiconductors allow the fabrication of ultrathin (sub-10 nm length) channels in Si-based devices since they are naturally ultrathin, flat, and free of surface dangling bonds. MoS2 and other TMDs also possess direct bandgaps in the monolayer limit, making them promising candidates for optoelectronics and nanophotonics applications.4

Semiconducting nanoparticles, such as QDs with nanoscale dimensions, can be customized for specific applications, including nonlinear optical devices, electro-optical devices, and computing applications.5

Limitations of Alternative Materials

Although alternative materials offer enhanced capabilities over traditional counterparts, their widespread commercial adoption faces several challenges.

In addition to high costs, their fabrication process is highly complex. The functioning mechanism of novel materials like QDs also remains unclear, affecting the reliability and stability of devices that employ them.2

The reliability of semiconductor chips is ensured by well-established structural designs and process technology, which govern their long-term operational stability. The heterogeneous integration of emerging materials with conventional chips is also crucial for continuing Moore’s Law.1

Thus, thorough redesigning and optimization of device structures and process flows are required to harness the full potential of emerging alternative materials.2

Future Prospects

Advances in machine learning (ML) and AI algorithms will impact the search for alternatives to semiconductor chips. They can be used to design novel materials that meet target property requirements, model the fabrication process, and predict their performances.

Automated and high-throughput AI-enabled techniques will also enhance performances and eliminate redundancies in materials fabrication and characterization.6

A symbiotic relationship between novel materials and traditional semiconductor chips will help realize devices with maximum cost-to-performance ratios.3

This heterogeneous integration through innovative device structures will enable investigation into the sub-10 nm regime with enhanced performance, signifying a substantial leap forward in semiconductor technology.1,2

More from AZoNano: Graphene-Based Electron Microscopy Grids

References and Further Reading

1. Saraswat, KC. (2020). How Far Can We Push Conventional Silicon Technology and What are the Future Alternatives?ECS Transactions. doi.org/10.1149/09805.0069ecst

2. Hu, Q. (2024). Advancements And Prospects in Third-Generation Semiconductor Materials: A Comprehensive Analysis.Highlights in Science, Engineering and Technology. doi.org/10.54097/cbcyx445

3. Buga, CS., Viana, JC. (2021). A Review on Materials and Technologies for Organic Large‐Area Electronics.Advanced Materials Technologies. doi.org/10.1002/admt.202001016

4. Ares, P., Novoselov, KS. (2021). Recent advances in graphene and other 2D materials.Nano Materials Science. doi.org/10.1016/j.nanoms.2021.05.002

5. Hossain, N., et al. (2023). Advances and significances of nanoparticles in semiconductor applications – A review.Results in Engineering. doi.org/10.1016/j.rineng.2023.101347

6. Batra, R., Song, L., & Ramprasad, R. (2020). Emerging materials intelligence ecosystems propelled by machine learning.Nature Reviews Materials. doi.org/10.1038/s41578-020-00255-y

Disclaimer: The views expressed here are those of the author expressed in their private capacity and do not necessarily represent the views of AZoM.com Limited T/A AZoNetwork the owner and operator of this website. This disclaimer forms part of the Terms and conditions of use of this website.

Are There Alternatives to Semiconductor Chips? (2024)
Top Articles
Which Crypto Has The Lowest Transaction Fees?
I have an RTX 3090, and I still don't play games in 4K | Digital Trends
Bofa Financial Center Near Me
Kelbi Horn
Financial organizations College Road
Epidermis Function: How Skin Protects You and How You Can Protect It
1998 Pontiac Firebird Trans Am for sale - Denver, CO - craigslist
Fox News 10 Mobile Al
At&T Outage Today 2022 Map
Las Cruces Craiglist
Xlauriexkimx
2010 Honda Crv A/C Relay Location
1998 Pontiac Firebird Trans Am for sale - Denver, CO - craigslist
Tfcu El Paso Online Banking
Ideal Gas Laws Gizmo Answer Key
Tighe Hamilton Hudson Ma Obituary
The Best Massage Guns
What's On Laff Tonight
84 Lumber Price Sheet 2023
Hannibal Mo Craigslist Pets
Www.stantonoptical/Order-Status
Kerangbulu Com
Is Mcdonald's Open 24/7 Near Me
TrueCar Values vs. Kelley Blue Book
Translations Of Linear Functions Worksheet Answer Key
Jesus Calling January 8:Whenever you feel inadequate, Remember that I am your ever-present Help.-是是誰 D+ 看世界~*|痞客邦
Caroline Cps.powerschool.com
9816 Orchard Trail
25 Of The Best Crown Tattoos For Men in 2024 | FashionGroomSpot
Xre-02022
Dress Border Nyt Crossword
Copper Grooming Report
Product Support Centre & Downloads | Kyocera Document Solutions
Cherry Gorilla aka Cherry Gorilla Glue Weed Strain Information | Leafly
How To Pause Tamagotchi Gen 2
Allied Universal Jobs Hiring
Camwhor*s Bypass 2022
Flanner And Buchanan Obituaries Indianapolis
Hidden Figures Movie Quiz Answers
Application guide for first-year students
Determinant Calculator Emath
Electric Toothbrush Feature Crossword
DEVIANT DESIRES| POWER BOOK II - 19. - Page 2
Learn4Good Job Posting
Mnps Payroll Calendar 2022-23
Seven Wonders of the Ancient World
Usps Passport Appt
Eddie Hearn rips Daniella Hemsley's boob flash as others come to defend: 'We live in a f*cking mental world'
Integral Calculator: Step-by-Step Solutions - Wolfram|Alpha
Espn Mbb Scores
New details of Trump family crypto project released, including who can buy in
Directions To Cvs Pharmacy
Latest Posts
Article information

Author: Rev. Leonie Wyman

Last Updated:

Views: 5936

Rating: 4.9 / 5 (59 voted)

Reviews: 90% of readers found this page helpful

Author information

Name: Rev. Leonie Wyman

Birthday: 1993-07-01

Address: Suite 763 6272 Lang Bypass, New Xochitlport, VT 72704-3308

Phone: +22014484519944

Job: Banking Officer

Hobby: Sailing, Gaming, Basketball, Calligraphy, Mycology, Astronomy, Juggling

Introduction: My name is Rev. Leonie Wyman, I am a colorful, tasty, splendid, fair, witty, gorgeous, splendid person who loves writing and wants to share my knowledge and understanding with you.