Bacterial-Fungal Interactions: Hyphens between Agricultural, Clinical, Environmental, and Food Microbiologists (2024)

1. Adams A. S., Currie C. R., Cardoza Y., Klepzig K. D., Raffa K. F. 2009. Effects of symbiotic bacteria and tree chemistry on the growth and reproduction of bark beetle fungal symbionts. Can. J. Forest Res. 39:1133–1147 [Google Scholar]

2. Addis E., Fleet G. H., Cox J. M., Kolak D., Leung T. 2001. The growth, properties and interactions of yeasts and bacteria associated with the maturation of Camembert and blue-veined cheeses. Int. J. Food Microbiol. 69:25–36 [PubMed] [Google Scholar]

3. Adesina M. F., Grosch R., Lembke A., Vatchev T. D., Smalla K. 2009. In vitro antagonists of Rhizoctonia solani tested on lettuce: rhizosphere competence, biocontrol efficiency and rhizosphere microbial community response. FEMS Microbiol. Ecol. 69:62–74 [PubMed] [Google Scholar]

4. Aho P. E., Seidler R. J., Evans H. J., Raju P. N. 1974. Distribution, enumeration, and identification of nitrogen-fixing bacteria associated with decay in living white fir trees. Phytopathology 64:1413–1420 [Google Scholar]

5. Alexandre H., Costello P. J., Remize F., Guzzo J., Guilloux-Benatier M. 2004. Saccharomyces cerevisiae-Oenococcus oeni interactions in wine: current knowledge and perspectives. Int. J. Food Microbiol. 93:141–154 [PubMed] [Google Scholar]

6. Al-Fattani M. A., Douglas L. J. 2004. Penetration of Candida biofilms by antifungal agents. Antimicrob. Agents Chemother. 48:3291–3297 [PMC free article] [PubMed] [Google Scholar]

7. Alvarez-Martinez C. E., Christie P. J. 2009. Biological diversity of prokaryotic type IV secretion systems. Microbiol. Mol. Biol. Rev. 73:775–808 [PMC free article] [PubMed] [Google Scholar]

8. Ansanay V., et al. 1996. Malolactic fermentation by engineered Saccharomyces cerevisiae as compared with engineered Schizosaccharomyces pombe. Yeast 12:215–225 [PubMed] [Google Scholar]

9. Araujo W. L., et al. 2001. Variability and interactions between endophytic bacteria and fungi isolated from leaf tissues of citrus rootstocks. Can. J. Microbiol. 47:229–236 [PubMed] [Google Scholar]

10. Arfi K., Leclercq-Perlat M. N., Spinnler H. E., Bonnarme P. 2004. Importance of curd-neutralising yeasts on the aromatic potential of Brevibacterium linens during cheese ripening. Int. Dairy J. 15:883–891 [Google Scholar]

11. Arora N. K., Kim M. J., Kang S. C., Maheshwari D. K. 2007. Role of chitinase and beta-1,3-glucanase activities produced by a fluorescent pseudomonad and in vitro inhibition of Phytophthora capsici and Rhizoctonia solani. Can. J. Microbiol. 53:207–212 [PubMed] [Google Scholar]

12. Artursson V. 2005. Bacterial-fungal interactions highlighted using microbiomics: potential application for plant growth enhancement. Ph.D. thesis. Swedish University of Agricultural Sciences, Uppsala, Sweden [Google Scholar]

13. Aruscavage D., Lee K., Miller S., LeJeune J. T. 2006. Interactions affecting the proliferation and control of human pathogens on edible plants. J. Food Sci. 71:R89–R99 [Google Scholar]

14. Ashenafi M., Busse M. 1991. Growth of Bacillus cereus in fermenting tempeh made from various beans and its inhibition by Lactobacillus plantarum. J. Appl. Bacteriol. 70:329–333 [PubMed] [Google Scholar]

15. Aspray T. J., et al. 2006. Mycorrhization helper bacteria: a case of specificity for altering ectomycorrhiza architecture but not ectomycorrhiza formation. Mycorrhiza 16:533–541 [PubMed] [Google Scholar]

16. Avila M., Ojcius D. M., Yilmaz O. 2009. The oral microbiota: living with a permanent guest. DNA Cell Biol. 28:405–411 [PMC free article] [PubMed] [Google Scholar]

17. Backman P. A., Sikora R. A. 2008. Endophytes: an emerging tool for biological control. Biol. Control 46:1–3 [Google Scholar]

18. Baena-Monroy T., et al. 2005. Candida albicans, Staphylococcus aureus and Streptococcus mutans colonization in patients wearing dental prosthesis. Med. Oral Patol. Oral Cir. Bucal 10(Suppl. 1):E27–E39 [PubMed] [Google Scholar]

19. Bamford C. V., et al. 2009. Streptococcus gordonii modulates Candida albicans biofilm formation through intergeneric communication. Infect. Immun. 77:3696–3704 [PMC free article] [PubMed] [Google Scholar]

20. Bandara W. M., Seneviratne G., Kulasooriya S. A. 2006. Interactions among endophytic bacteria and fungi: effects and potentials. J. Biosci. 31:645–650 [PubMed] [Google Scholar]

21. Barbieri E., et al. 2010. New evidence for nitrogen fixation within the Italian white truffle Tuber magnatum. Fungal Biol. 114:936–942 [PubMed] [Google Scholar]

22. Barea J. M., et al. 1998. Impact on arbuscular mycorrhiza formation of Pseudomonas strains used as inoculants for biocontrol of soil-borne fungal plant pathogens. Appl. Environ. Microbiol. 64:2304–2307 [PMC free article] [PubMed] [Google Scholar]

23. Barea J. M., Azcon R., Azcon-Aguilar C. 2002. Mycorrhizosphere interactions to improve plant fitness and soil quality. Antonie Van Leeuwenhoek 81:343–351 [PubMed] [Google Scholar]

24. Barke J., et al. 2010. A mixed community of actinomycetes produce multiple antibiotics for the fungus farming ant Acromyrmex octospinosus. BMC Biol. 8:109 doi:10.1186/1741-7007-8-109 [PMC free article] [PubMed] [Google Scholar]

25. Barret M., et al. 2009. The plant pathogenic fungus Gaeumannomyces graminis var. tritici improves bacterial growth and triggers early gene regulations in the biocontrol strain Pseudomonas fluorescens Pf29Arp. New Phytol. 181:435–447 [PubMed] [Google Scholar]

26. Bastian F., Alabouvette C. 2009. Lights and shadows on the conservation of a rock art cave: the case of Lascaux Cave. Int. J. Speleol. 38:55–60 [Google Scholar]

27. Bastian F., Alabouvette C., Jurado V., Saiz-Jimenez C. 2009. Impact of biocide treatments on the bacterial communities of the Lascaux Cave. Naturwissenschaften 96:863–868 [PubMed] [Google Scholar]

28. Bastian F., Jurado V., Novakova A., Alabouvette C., Saiz-Jimenez C. 2010. The microbiology of Lascaux Cave. Microbiology 156:644–652 [PubMed] [Google Scholar]

29. Bates S. T., Cropsey G. W., Caporaso J. G., Knight R., Fierer N. 2011. Bacterial communities associated with the lichen symbiosis. Appl. Environ. Microbiol. 77:1309–1314 [PMC free article] [PubMed] [Google Scholar]

30. Bauchop T., Mountfort D. O. 1981. Cellulose fermentation by a rumen anaerobic fungus in both the absence and the presence of rumen methanogens. Appl. Environ. Microbiol. 42:1103–1110 [PMC free article] [PubMed] [Google Scholar]

31. Bauernfeind A., et al. 1987. Qualitative and quantitative microbiological analysis of sputa of 102 patients with cystic fibrosis. Infection 15:270–277 [PubMed] [Google Scholar]

32. Baurhoo B., Goldflus F., Zhao X. 2009. Purified cell wall of Saccharomyces cerevisiae increases protection against intestinal pathogens in broiler chickens. Int. J. Poult. Sci. 8:133–137 [Google Scholar]

33. Benedict C. V., Cameron J. A., Huang S. J. 1983. Polycaprolactone degradation by mixed and pure cultures of bacteria and a yeast. J. Appl. Polym. Sci. 28:335–342 [Google Scholar]

34. Berg G. 2009. Plant-microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl. Microbiol. Biotechnol. 84:11–18 [PubMed] [Google Scholar]

35. Berg G., et al. 2005. Endophytic and ectophytic potato-associated bacterial communities differ in structure and antagonistic function against plant pathogenic fungi. FEMS Microbiol. Ecol. 51:215–229 [PubMed] [Google Scholar]

36. Bernalier A., Fonty G., Bonnemoy F., Gouet P. 1992. Degradation and fermentation of cellulose by the rumen anaerobic fungi in axenic cultures or in association with cellulolytic bacteria. Curr. Microbiol. 25:143–148 [Google Scholar]

37. Bertaux J., et al. 2005. Occurrence and distribution of endobacteria in the plant-associated mycelium of the ectomycorrhizal fungus Laccaria bicolor S238N. Environ. Microbiol. 7:1786–1795 [PubMed] [Google Scholar]

38. Bhattacharya D., Nagpure A., Gupta R. K. 2007. Bacterial chitinases: properties and potential. Crit. Rev. Biotechnol. 27:21–28 [PubMed] [Google Scholar]

39. Bianciotto V., Andreotti S., Balestrini R., Bonfante P., Perotto S. 2001. Extracellular polysaccharides are involved in the attachment of Azospirillum brasilense and Rhizobium leguminosarum to arbuscular mycorrhizal structures. Eur. J. Histochem. 45:39–49 [PubMed] [Google Scholar]

40. Bianciotto V., et al. 1996. An obligately endosymbiotic mycorrhizal fungus itself harbors obligately intracellular bacteria. Appl. Environ. Microbiol. 62:3005–3010 [PMC free article] [PubMed] [Google Scholar]

41. Bianciotto V., et al. 2004. Vertical transmission of endobacteria in the arbuscular mycorrhizal fungus Gigaspora margarita through generation of vegetative spores. Appl. Environ. Microbiol. 70:3600–3608 [PMC free article] [PubMed] [Google Scholar]

42. Bilger W., Büdel B., Mollenhauer R., Mollenhauer D. 1994. Photosynthetic activity of two developmental stages of a Nostoc strain (Cyanobacteria) isolated from Geosiphon pyriforme (Mycota). J. Phycol. 30:225–230 [Google Scholar]

43. Bjelland T., et al. 2011. Microbial metacommunities in the lichen-rock habitat. Environ. Microbiol. Rep. 4:434–442 [PubMed] [Google Scholar]

44. Blakeman J. P., Fraser A. K. 1971. Inhibition of Botrytis cinerea spores by bacteria on the surface of chrysanthemum leaves. Physiol. Plant Pathol. 1:45–54 [Google Scholar]

45. Blanchette R. A. 1977. Associations among bacteria, yeasts, and basidiomycetes during wood decay. Phytopathology 68:631–637 [Google Scholar]

46. Bleves S., et al. 2010. Protein secretion systems in Pseudomonas aeruginosa: a wealth of pathogenic weapons. Int. J. Med. Microbiol. 300:534–543 [PubMed] [Google Scholar]

47. Bonaiti C., Irlinger F., Spinnler H. E., Engel E. 2005. An iterative sensory procedure to select odor-active associations in complex consortia of microorganisms: application to the construction of a cheese model. J. Dairy Sci. 88:1671–1684 [PubMed] [Google Scholar]

48. Bonfante P., Anca I. A. 2009. Plants, mycorrhizal fungi, and bacteria: a network of interactions. Annu. Rev. Microbiol. 63:363–383 [PubMed] [Google Scholar]

49. Boonchan S., Britz M. L., Stanley G. A. 2000. Degradation and mineralization of high-molecular-weight polycyclic aromatic hydrocarbons by defined fungal-bacterial cocultures. Appl. Environ. Microbiol. 66:1007–1019 [PMC free article] [PubMed] [Google Scholar]

50. Brakhage A. A., Schroeckh V. 2011. Fungal secondary metabolites—strategies to activate silent gene clusters. Fungal Genet. Biol. 48:15–22 [PubMed] [Google Scholar]

51. Brand A., Barnes J. D., Mackenzie K. S., Odds F. C., Gow N. A. 2008. Cell wall glycans and soluble factors determine the interactions between the hyphae of Candida albicans and Pseudomonas aeruginosa. FEMS Microbiol. Lett. 287:48–55 [PMC free article] [PubMed] [Google Scholar]

52. Brendel N., Partida-Martinez L. P., Scherlach K., Hertweck C. 2007. A cryptic PKS-NRPS gene locus in the plant commensal Pseudomonas fluorescens Pf-5 codes for the biosynthesis of an antimitotic rhizoxin complex. Org. Biomol. Chem. 5:2211–2213 [PubMed] [Google Scholar]

53. Brucker R. M., et al. 2008. Amphibian chemical defense: antifungal metabolites of the microsymbiont Janthinobacterium lividum on the salamander Plethodon cinereus. J. Chem. Ecol. 34:1422–1429 [PubMed] [Google Scholar]

54. Brule C., et al. 2001. Survival in the soil of the ectomycorrhizal fungus Laccaria bicolor and the effects of a mycorrhiza helper Pseudomonas fluorescens. Soil Biol. Biochem. 33:1683–1694 [Google Scholar]

55. Bundock P., den Dulk-Ras A., Beijersbergen A., Hooykaas P. J. 1995. Trans-kingdom T-DNA transfer from Agrobacterium tumefaciens to Saccharomyces cerevisiae. EMBO J. 14:3206–3214 [PMC free article] [PubMed] [Google Scholar]

56. Bushley K. E., Turgeon B. G. 2010. Phylogenomics reveals subfamilies of fungal nonribosomal peptide synthetases and their evolutionary relationships. BMC Evol. Biol. 10:26 doi:10.1186/1471-2148-10-26 [PMC free article] [PubMed] [Google Scholar]

57. Buts J. P., et al. 2006. Saccharomyces boulardii produces in rat small intestine a novel protein phosphatase that inhibits Escherichia coli endotoxin by dephosphorylation. Pediatr. Res. 60:24–29 [PubMed] [Google Scholar]

58. Calvaruso C., Turpault M. P., Leclerc E., Frey-Klett P. 2007. Impact of ectomycorrhizosphere on the functional diversity of soil bacterial and fungal communities from a forest stand in relation to nutrient mobilization processes. Microb. Ecol. 54:567–577 [PubMed] [Google Scholar]

59. Calvo A. M., Wilson R. A., Bok J. W., Keller N. P. 2002. Relationship between secondary metabolism and fungal development. Microbiol. Mol. Biol. Rev. 66:447–459 [PMC free article] [PubMed] [Google Scholar]

60. Caplice E., Fitzgerald G. F. 1999. Food fermentations: role of microorganisms in food production and preservation. Int. J. Food Microbiol. 50:131–149 [PubMed] [Google Scholar]

61. Cardinale M., Vieira de Castro J., Jr., Muller H., Berg G., Grube M. 2008. In situ analysis of the bacterial community associated with the reindeer lichen Cladonia arbuscula reveals predominance of Alphaproteobacteria. FEMS Microbiol. Ecol. 66:63–71 [PubMed] [Google Scholar]

62. Carlson E. 1983. Effect of strain of Staphylococcus aureus on synergism with Candida albicans resulting in mouse mortality and morbidity. Infect. Immun. 42:285–292 [PMC free article] [PubMed] [Google Scholar]

63. Carlson E. 1983. Enhancement by Candida albicans of Staphylococcus aureus, Serratia marcescens, and Streptococcus faecalis in the establishment of infection in mice. Infect. Immun. 39:193–197 [PMC free article] [PubMed] [Google Scholar]

64. Castagliuolo I., LaMont J. T., Nikulasson S. T., Pothoulakis C. 1996. Saccharomyces boulardii protease inhibits Clostridium difficile toxin A effects in the rat ileum. Infect. Immun. 64:5225–5232 [PMC free article] [PubMed] [Google Scholar]

65. Castagliuolo I., Riegler M. F., Valenick L., LaMont J. T., Pothoulakis C. 1999. Saccharomyces boulardii protease inhibits the effects of Clostridium difficile toxins A and B in human colonic mucosa. Infect. Immun. 67:302–307 [PMC free article] [PubMed] [Google Scholar]

66. Cerigini E., Palma F., Barbieri E., Buffalini M., Stocchi V. 2008. The Tuber borchii fruiting body-specific protein TBF-1, a novel lectin which interacts with associated Rhizobium species. FEMS Microbiol. Lett. 284:197–203 [PubMed] [Google Scholar]

67. Cerniglia C. E., Sutherland J. B. 2006. Relative roles of bacteria and fungi in polycyclic aromatic hydrocarbon biodegradation and bioremediation of contaminated soils, p. 182–211In Gadd G. M. (ed.), Fungi in biogeochemical cycles. Cambridge University Press, New York, NY [Google Scholar]

68. Chandelier A., Abras S., Laurent F., Debruxelles N., Cavelier M. 2006. Effect of temperature and bacteria on sporulation of Phytophthora alni in river water. Commun. Agric. Appl. Biol. Sci. 71:873–880 [PubMed] [Google Scholar]

69. Chaucheyras-Durand F., Faqir F., Ameilbonne A., Rozand C., Martin C. 2010. Fates of acid-resistant and non-acid-resistant Shiga toxin-producing Escherichia coli strains in ruminant digestive contents in the absence and presence of probiotics. Appl. Environ. Microbiol. 76:640–647 [PMC free article] [PubMed] [Google Scholar]

70. Chaucheyras-Durand F., Fonty G. 2001. Establishment of cellulolytic bacteria and development of fermentative activities in the rumen of gnotobiotically-reared lambs receiving the microbial additive Saccharomyces cerevisiae CNCM I-1077. Reprod. Nutr. Dev. 41:57–68 [PubMed] [Google Scholar]

71. Chaucheyras-Durand F., Masseglia S., Fonty G. 2005. Effect of the microbial feed additive Saccharomyces cerevisiae CNCM I-1077 on protein and peptide degrading activities of rumen bacteria grown in vitro. Curr. Microbiol. 50:96–101 [PubMed] [Google Scholar]

72. Chavez-Gomez B., et al. 2003. Removal of phenanthrene from soil by co-cultures of bacteria and fungi pregrown on sugarcane bagasse pith. Bioresour. Technol. 89:177–183 [PubMed] [Google Scholar]

73. Cho Y., Kim J., Crowley D., Cho B. 2003. Growth promotion of the edible fungus Pleurotus ostreatus by fluorescent pseudomonads. FEMS Microbiol. Lett. 218:271–276 [PubMed] [Google Scholar]

74. Citernesi A. S., Fortuna P., Filippi C., Bagnoli G., Giovannetti M. 1996. The occurrence of antagonistic bacteria in Glomus mosseae pot cultures. Agronomie 16:671–677 [Google Scholar]

75. Citterio B., et al. 2001. Possible involvement of Pseudomonas fluorescens and Bacillaceae in structural modifications of Tuber borchii fruit bodies. Can. J. Microbiol. 47:264–268 [PubMed] [Google Scholar]

76. Clausen C. A. 1996. Bacterial associations with decaying wood: a review. Int. Biodeterior. Biodegradation 37:101–107 [Google Scholar]

77. Compant S., Duffy B., Nowak J., Clement C., Barka E. A. 2005. Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl. Environ. Microbiol. 71:4951–4959 [PMC free article] [PubMed] [Google Scholar]

78. Corsetti A., et al. 2001. Phenotypic and molecular identification and clustering of lactic acid bacteria and yeasts from wheat (species Triticum durum and Triticum aestivum) sourdoughs of Southern Italy. Int. J. Food Microbiol. 64:95–104 [PubMed] [Google Scholar]

79. Corsetti A., Rossi J., Gobbetti M. 2001. Interactions between yeasts and bacteria in the smear surface-ripened cheeses. Int. J. Food Microbiol. 69:1–10 [PubMed] [Google Scholar]

80. Crittenden P. D., Llimona X., Sancho L. G. 2007. Lichenized unicellular cyanobacteria fix nitrogen in the light. Can. J. Bot. 85:1003–1006 [Google Scholar]

81. Cueto M., et al. 2001. Pestalone, a new antibiotic produced by a marine fungus in response to bacterial challenge. J. Nat. Prod. 64:1444–1446 [PubMed] [Google Scholar]

82. Cugini C., et al. 2007. Farnesol, a common sesquiterpene, inhibits PQS production in Pseudomonas aeruginosa. Mol. Microbiol. 65:896–906 [PubMed] [Google Scholar]

83. Cugini C., Morales D. K., Hogan D. A. 2010. Candida albicans-produced farnesol stimulates Pseudomonas quinolone signal production in LasR-defective Pseudomonas aeruginosa strains. Microbiology 156:3096–3107 [PMC free article] [PubMed] [Google Scholar]

84. Currie C. R., Poulsen M., Mendenhall J., Boomsma J. J., Billen J. 2006. Coevolved crypts and exocrine glands support mutualistic bacteria in fungus-growing ants. Science 311:81–83 [PubMed] [Google Scholar]

85. Currie C. R., Scott J. A., Summerbell R. C., Malloch D. 1999. Fungus-growing ants use antibiotic-producing bacteria to control garden parasites. Nature 398:701–704 [Google Scholar]

86. Curvale-Fauchet N., Botterel F., Legrand P., Guillot J., Bretagne S. 2004. Frequency of intravascular catheter colonization by Malassezia spp. in adult patients. Mycoses 47:491–494 [PubMed] [Google Scholar]

87. Cusano A. M., et al. 2011. Pseudomonas fluorescens BBc6R8 type III secretion mutants no longer promote ectomycorrhizal symbiosis. Environ. Microbiol. Rep. 3:203–210 [PubMed] [Google Scholar]

88. de Boer W., de Ridder-Duine A. S., Klein Gunnewiek P. J. A., Smant W., Van Veen J. A. 2008. Rhizosphere bacteria from sites with higher fungal densities exhibit greater levels of potential antifungal properties. Soil Biol. Biochem. 40:1542–1544 [Google Scholar]

89. de Boer W., Folman L. B., Summerbell R. C., Boddy L. 2005. Living in a fungal world: impact of fungi on soil bacterial niche development. FEMS Microbiol. Rev. 29:795–811 [PubMed] [Google Scholar]

90. de Boer W., et al. 2004. Collimonas fungivorans gen. nov., sp. nov., a chitinolytic soil bacterium with the ability to grow on living fungal hyphae. Int. J. Syst. Evol. Microbiol. 54:857–864 [PubMed] [Google Scholar]

91. de Boer W., Wagenaar A. M., Klein Gunnewiek P. J., van Veen J. A. 2007. In vitro suppression of fungi caused by combinations of apparently non-antagonistic soil bacteria. FEMS Microbiol. Ecol. 59:177–185 [PubMed] [Google Scholar]

92. De Groot M. J., Bundock P., Hooykaas P. J., Beijersbergen A. G. 1998. Agrobacterium tumefaciens-mediated transformation of filamentous fungi. Nat. Biotechnol. 16:839–842 [PubMed] [Google Scholar]

93. Deveau A., et al. 2010. Role of fungal trehalose and bacterial thiamine in the improved survival and growth of the ectomycorrhizal fungus Laccaria bicolor S238N and the helper bacterium Pseudomonas fluorescens BBc6R8. Environ. Microbiol. Rep. 2:560–568 [PubMed] [Google Scholar]

94. Deveau A., et al. 2007. The mycorrhiza helper Pseudomonas fluorescens BBc6R8 has a specific priming effect on the growth, morphology and gene expression of the ectomycorrhizal fungus Laccaria bicolor S238N. New Phytol. 175:743–755 [PubMed] [Google Scholar]

95. de Weert S., Kuiper I., Lagendijk E. L., Lamers G. E., Lugtenberg B. J. 2004. Role of chemotaxis toward fusaric acid in colonization of hyphae of Fusarium oxysporum f. sp. radicis-lycopersici by Pseudomonas fluorescens WCS365. Mol. Plant Microbe Interact. 17:1185–1191 [PubMed] [Google Scholar]

96. Dewey F. M., Wong Y. L., Seery R., Hollins T. W., Gurr S. J. 1999. Bacteria associated with Stagonospora (Septoria) nodorum increase pathogenicity of the fungus. New Phytol. 144:489–497 [PubMed] [Google Scholar]

97. Diaz E. M., Sacristan M., Legaz M. E., Vicente C. 2009. Isolation and characterization of a cyanobacterium-binding protein and its cell wall receptor in the lichen Peltigera canina. Plant Signal. Behav. 4:598–603 [PMC free article] [PubMed] [Google Scholar]

98. Dixon E., et al. 2010. Bacteria-induced static batch fungal fermentation of the diterpenoid cyathin A(3), a small-molecule inducer of nerve growth factor. J. Ind. Microbiol. Biotechnol. 38:607–615 [PubMed] [Google Scholar]

99. Donlan R. M., Costerton J. W. 2002. Biofilms: survival mechanisms of clinically relevant microorganisms. Clin. Microbiol. Rev. 15:167–193 [PMC free article] [PubMed] [Google Scholar]

100. Duponnois R., Garbaye J. 1990. Some mechanisms involved in growth stimulation of ectomycorrhizal fungi by bacteria. Can. J. Bot. 68:2148–2152 [Google Scholar]

101. Eckburg P. B., et al. 2005. Diversity of the human intestinal microbial flora. Science 308:1635–1638 [PMC free article] [PubMed] [Google Scholar]

102. EFSA 2006. Opinion of the Scientific Panel on Additives and Products or Substances Used in Animal Feed on the safety and efficacy of the product “Biosaf Sc 47,” a preparation of Saccharomyces cerevisiae, as a feed additive for horses (question no. EFSA-Q-2005-025). EFSA J. 384:1–9 [Google Scholar]

103. Eger G. 1972. Experiments and comments on the action of bacteria on sporophore initiation in Agaricus bisporus. Mushroom Sci. 8:719–725 [Google Scholar]

104. Elad Y., Baker R. 1985. The role of competition for iron and carbon in suppression of chlamydospore germination of Fusarium spp. by Pseudomonas spp. Phytopathology 75:1053–1059 [Google Scholar]

105. Fajardo A., Martínez J. L. 2008. Antibiotics as signals that trigger specific bacterial responses. Curr. Opin. Microbiol. 11:161–167 [PubMed] [Google Scholar]

106. Finstein M. S., Alexander M. 1962. Competition for carbon and nitrogen between Fusarium and bacteria. Soil Sci. 94:334–339 [Google Scholar]

107. Fitzpatrick D. A., Logue M. E., Butler G. 2008. Evidence of recent interkingdom horizontal gene transfer between bacteria and Candida parapsilosis. BMC Evol. Biol. 8:181 doi: 10.1186/1471-2148-8-181 [PMC free article] [PubMed] [Google Scholar]

108. Fleet G. H. 2003. Yeast interactions and wine flavour. Int. J. Food Microbiol. 86:11–22 [PubMed] [Google Scholar]

109. Fleming A. 1929. On the antibacterial action of cultures of a Penicillium, with special reference to their use in the isolation of B. influenzae. Br. J. Exp. Pathol. 10:226–236 [Google Scholar]

110. Fogliano V., et al. 2002. Pseudomonas lipodepsipeptides and fungal cell wall-degrading enzymes act synergistically in biological control. Mol. Plant Microbe Interact. 15:323–333 [PubMed] [Google Scholar]

111. Forano E., Chaucheyras-Durand F., Fonty G. 2007. How bacterial-fungal interactions optimise the functioning of the rumen. Biofutur 283:20–23 [Google Scholar]

112. Foster K. W., Thomas L., Warner J., Desmond R., Elewski B. E. 2005. A bipartite interaction between Pseudomonas aeruginosa and fungi in onychomycosis. Arch. Dermatol. 141:1467–1468 [PubMed] [Google Scholar]

113. Fox P. F., Lucey J. A., Cogan T. M. 1990. Glycolysis and related reactions during cheese manufacture and ripening. Crit. Rev. Food Sci. Nutr. 29:237–253 [PubMed] [Google Scholar]

114. Frases S., Chaskes S., Dadachova E., Casadevall A. 2006. Induction by Klebsiella aerogenes of a melanin-like pigment in Cryptococcus neoformans. Appl. Environ. Microbiol. 72:1542–1550 [PMC free article] [PubMed] [Google Scholar]

115. Frases S., Salazar A., Dadachova E., Casadevall A. 2007. Cryptococcus neoformans can utilize the bacterial melanin precursor hom*ogentisic acid for fungal melanogenesis. Appl. Environ. Microbiol. 73:615–621 [PMC free article] [PubMed] [Google Scholar]

116. Frey P., Frey-Klett P., Garbaye J., Berge O., Heulin T. 1997. Metabolic and genotypic fingerprinting of fluorescent pseudomonads associated with the douglas fir-Laccaria bicolor mycorrhizosphere. Appl. Environ. Microbiol. 63:1852–1860 [PMC free article] [PubMed] [Google Scholar]

117. Frey-Klett P., et al. 2005. Ectomycorrhizal symbiosis affects functional diversity of rhizosphere fluorescent pseudomonads. New Phytol. 165:317–328 [PubMed] [Google Scholar]

118. Frey-Klett P., Garbaye J. 2005. Mycorrhiza helper bacteria: a promising model for the genomic analysis of fungal-bacterial interactions. New Phytol. 168:4–8 [PubMed] [Google Scholar]

119. Frey-Klett P., Garbaye J., Tarkka M. 2007. The mycorrhiza helper bacteria revisited. New Phytol. 176:22–36 [PubMed] [Google Scholar]

120. Frey-Klett P., Sarniguet A. 2008. Champignons et bactéries, les secrets de leur vie commune. Biofutur 284:19 [Google Scholar]

121. Furuno S., et al. 2010. Fungal mycelia allow chemotactic dispersal of polycyclic aromatic hydrocarbon-degrading bacteria in water-unsaturated systems. Environ. Microbiol. 12:1391–1398 [PubMed] [Google Scholar]

122. Gaddy J. A., Tomaras A. P., Actis L. A. 2009. The Acinetobacter baumannii 19606 OmpA protein plays a role in biofilm formation on abiotic surfaces and in the interaction of this pathogen with eukaryotic cells. Infect. Immun. 77:3150–3160 [PMC free article] [PubMed] [Google Scholar]

123. Gaggia F., Mattarelli P., Biavati B. 2010. Probiotics and prebiotics in animal feeding for safe food production. Int. J. Food Microbiol. 141(Suppl. 1):S15–S28 [PubMed] [Google Scholar]

124. Garbaye J. 1994. Helper bacteria—a new dimension to the mycorrhizal symbiosis. New Phytol. 128:197–210 [PubMed] [Google Scholar]

125. Gastebois A., Latge J. P. 2008. Les bacteries et champignons pathogenes de l'homme, amis-ennemis. Biofutur 284:22–25 [Google Scholar]

126. Gee J. E., et al. 2011. Characterization of Burkholderia rhizoxinica and B. endofungorum isolated from clinical specimens. PLoS One 6:e15731 doi: 10.1371/journal.pone.0015731 [PMC free article] [PubMed] [Google Scholar]

127. Georgopapadakou N. H., Walsh T. J. 1994. Human mycoses: drugs and targets for emerging pathogens. Science 264:371–373 [PubMed] [Google Scholar]

128. Gerez C. L., Carbajo M. S., Rollan G., Torres Leal G., Font de Valdez G. 2010. Inhibition of citrus fungal pathogens by using lactic acid bacteria. J. Food Sci. 75:M354–M359 [PubMed] [Google Scholar]

129. Gerlach R. G., Hensel M. 2007. Protein secretion systems and adhesins: the molecular armory of Gram-negative pathogens. Int. J. Med. Microbiol. 297:401–415 [PubMed] [Google Scholar]

130. Ghannoum M. A., et al. 2010. Characterization of the oral fungal microbiome (mycobiome) in healthy individuals. PLoS Pathog. 6:e1000713 doi: 10.1371/journal.ppat.1000713 [PMC free article] [PubMed] [Google Scholar]

131. Gibson J., Sood A., Hogan D. A. 2009. Pseudomonas aeruginosa-Candida albicans interactions: localization and fungal toxicity of a phenazine derivative. Appl. Environ. Microbiol. 75:504–513 [PMC free article] [PubMed] [Google Scholar]

132. Gil-Turnes M. S., Hay M. E., Fenical W. 1989. Symbiotic marine bacteria chemically defend crustacean embryos from a pathogenic fungus. Science 246:116–118 [PubMed] [Google Scholar]

133. Girlanda M., et al. 2001. Impact of biocontrol Pseudomonas fluorescens CHA0 and a genetically modified derivative on the diversity of culturable fungi in the cucumber rhizosphere. Appl. Environ. Microbiol. 67:1851–1864 [PMC free article] [PubMed] [Google Scholar]

134. Gobbetti M. 1998. The sourdough microflora: interactions of lactic acid bacteria and yeasts. Trends Food Sci. Technol. 9:267–274 [Google Scholar]

135. Gojkovic Z., et al. 2004. Horizontal gene transfer promoted evolution of the ability to propagate under anaerobic conditions in yeasts. Mol. Genet. Genomics 271:387–393 [PubMed] [Google Scholar]

136. Gorbushina A. A., et al. 2004. Bacterial and fungal diversity and biodeterioration problems in mural painting environments of St. Martins church (Greene-Kreiensen, Germany). Int. Biodeterior. Biodegradation 53:13–24 [Google Scholar]

137. Gou M., Qu Y., Zhou J., Ma F., Tan L. 2009. Azo dye decolorization by a new fungal isolate, Penicillium sp. QQ and fungal-bacterial cocultures. J. Hazard. Mater. 170:314–319 [PubMed] [Google Scholar]

138. Greaves H. 1971. The bacterial factor in wood decay. Wood Sci. Technol. 5:6–16 [Google Scholar]

139. Grewal S., Rainey P. 1991. Phenotypic variation of Pseudomonas putida and P. tolaasii affects the chemotactic response to Agaricus bisporus mycelial exudate. J. Gen. Microbiol. 137:2761–2768 [PubMed] [Google Scholar]

140. Grube M., Berg G. 2009. Microbial consortia of bacteria and fungi with focus on the lichen symbiosis. Fungal Biol. Rev. 23:72–85 [Google Scholar]

141. Grube M., Cardinale M., de Castro J. V., Jr., Muller H., Berg G. 2009. Species-specific structural and functional diversity of bacterial communities in lichen symbioses. ISME J. 3:1105–1115 [PubMed] [Google Scholar]

142. Guetsky R., Shtienberg D., Elad Y., Dinoor A. 2001. Combining biocontrol agents to reduce the variability of biological control. Phytopathology 91:621–627 [PubMed] [Google Scholar]

143. Guilloux-Benatier M., Remize F., Gal L., Guzzo J., Alexandre H. 2006. Effects of yeast proteolytic activity on Oenococcus oeni and malolactic fermentation. FEMS Microbiol. Lett. 263:183–188 [PubMed] [Google Scholar]

144. Guillouzouic A., et al. 2008. Fatal coinfection with Legionella pneumophila serogroup 8 and Aspergillus fumigatus. Diagn. Microbiol. Infect. Dis. 60:193–195 [PubMed] [Google Scholar]

145. Gulis V., Suberkropp K. 2003. Interactions between stream fungi and bacteria associated with decomposing leaf litter at different levels of nutrient availability. Aquat. Microb. Ecol. 30:149–157 [Google Scholar]

146. Gupta N., Haque A., Mukhopadhyay G., Narayan R. P., Prasad R. 2005. Interactions between bacteria and Candida in the burn wound. Burns 31:375–378 [PubMed] [Google Scholar]

147. Haas D., Defa*go G. 2005. Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat. Rev. Microbiol. 3:307–319 [PubMed] [Google Scholar]

148. Hachmeister K. A., Fung D. Y. 1993. Tempeh: a mold-modified indigenous fermented food made from soybeans and/or cereal grains. Crit. Rev. Microbiol. 19:137–188 [PubMed] [Google Scholar]

149. Haeder S., Wirth R., Herz H., Spiteller D. 2009. Candicidin-producing Streptomyces support leaf-cutting ants to protect their fungus garden against the pathogenic fungus Escovopsis. Proc. Natl. Acad. Sci. U. S. A. 106:4742–4746 [PMC free article] [PubMed] [Google Scholar]

150. Hall C., Brachat S., Dietrich F. S. 2005. Contribution of horizontal gene transfer to the evolution of Saccharomyces cerevisiae. Eukaryot. Cell 4:1102–1115 [PMC free article] [PubMed] [Google Scholar]

151. Hammerschmidt R. 1999. Induced disease resistance: how do induced plants stop pathogens? Physiol. Mol. Plant Pathol. 55:77–84 [Google Scholar]

152. Hansen T. K., Jakobsen M. 1997. Possible role of microbial interactions for growth and sporulation of Penicillium roqueforti in Danablu. Lait 77:479–488 [Google Scholar]

153. Harriott M. M., Noverr M. C. 2010. Ability of Candida albicans mutants to induce Staphylococcus aureus vancomycin resistance during polymicrobial biofilm formation. Antimicrob. Agents Chemother. 54:3746–3755 [PMC free article] [PubMed] [Google Scholar]

154. Harriott M. M., Noverr M. C. 2009. Candida albicans and Staphylococcus aureus form polymicrobial biofilms: effects on antimicrobial resistance. Antimicrob. Agents Chemother. 53:3914–3922 [PMC free article] [PubMed] [Google Scholar]

155. Harris R. N., et al. 2009. Skin microbes on frogs prevent morbidity and mortality caused by a lethal skin fungus. ISME J. 3:818–824 [PubMed] [Google Scholar]

156. Harris R. N., Lauer A., Simon M. A., Banning J. L., Alford R. A. 2009. Addition of antifungal skin bacteria to salamanders ameliorates the effects of chytridiomycosis. Dis. Aquat. Organ. 83:11–16 [PubMed] [Google Scholar]

157. Hayes W. A., Randle P. E., Last F. T. 1969. The nature of the microbial stimulus affecting sporophore formation in Agaricus bisporus (Lange) Sing. Ann. Appl. Biol. 64:177–187 [Google Scholar]

158. Heinemann J. A., Sprague G. F., Jr 1989. Bacterial conjugative plasmids mobilize DNA transfer between bacteria and yeast. Nature 340:205–209 [PubMed] [Google Scholar]

159. Heinonsalo J., Jorgensen K. S., Haahtela K., Sen R. 2000. Effects of Pinus sylvestris root growth and mycorrhizosphere development on bacterial carbon source utilization and hydrocarbon oxidation in forest and petroleum-contaminated soils. Can. J. Microbiol. 46:451–464 [PubMed] [Google Scholar]

160. Hermann C., Hermann J., Munzel U., Ruchel R. 1999. Bacterial flora accompanying Candida yeasts in clinical specimens. Mycoses 42:619–627 [PubMed] [Google Scholar]

161. Hildebrandt U., Janetta K., Bothe H. 2002. Towards growth of arbuscular mycorrhizal fungi independent of a plant host. Appl. Environ. Microbiol. 68:1919–1924 [PMC free article] [PubMed] [Google Scholar]

162. Hildebrandt U., Ouziad F., Marner F. J., Bothe H. 2006. The bacterium Paenibacillus validus stimulates growth of the arbuscular mycorrhizal fungus Glomus intraradices up to the formation of fertile spores. FEMS Microbiol. Lett. 254:258–267 [PubMed] [Google Scholar]

163. Hoffman M. T., Arnold A. E. 2010. Diverse bacteria inhabit living hyphae of phylogenetically diverse fungal endophytes. Appl. Environ. Microbiol. 76:4063–4075 [PMC free article] [PubMed] [Google Scholar]

164. Hogan D., Kolter R. 2002. Pseudomonas-Candida interactions: an ecological role for virulence factors. Science 296:2229–2232 [PubMed] [Google Scholar]

165. Hogan D., Vik A., Kolter R. 2004. A Pseudomonas aeruginosa quorum-sensing molecule influences Candida albicans morphology. Mol. Microbiol. 54:1212–1223 [PubMed] [Google Scholar]

166. Hogan D. A., Wargo M. J., Beck N. 2007. Bacterial biofilms on fungal surfaces, p. 235–245In Kjelleberg S., Givskov M. (ed.), The biofilm mode of life: mechanisms and adaptations. Horizon Scientific Press, Norfolk, United Kingdom [Google Scholar]

167. Holcombe L. J., et al. 2010. Pseudomonas aeruginosa secreted factors impair biofilm development in Candida albicans. Microbiology 156:1476–1486 [PubMed] [Google Scholar]

168. Holmes A. R., Cannon R. D., Jenkinson H. F. 1995. Interactions of Candida albicans with bacteria and salivary molecules in oral biofilms. J. Ind. Microbiol. 15:208–213 [PubMed] [Google Scholar]

169. Hoppert M., König S. 2006. The succession of biofilms on building stone and its possible impact on biogenic weathering, p. 311–315In Fort R., Álvarez de Buergo M., Gomez-Heras M., Vazquez-Calvo C. (ed.), Heritage, weathering, and conservation: proceedings of the international conference, HWC-2006. Taylor & Francis, London, United Kingdom [Google Scholar]

170. Huttunen K., et al. 2004. Synergistic interaction in simultaneous exposure to Streptomyces californicus and Stachybotrys chartarum. Environ. Health Perspect. 112:659–665 [PMC free article] [PubMed] [Google Scholar]

171. Ibrahim A. S., et al. 2008. Bacterial endosymbiosis is widely present among zygomycetes but does not contribute to the pathogenesis of mucormycosis. J. Infect. Dis. 198:1083–1090 [PMC free article] [PubMed] [Google Scholar]

172. Inbar J., Chet I. 1991. Evidence that chitinase produced by Aeromonas caviae is involved in the biological control of soil-borne plant pathogens by this bacterium. Soil Biol. Biochem. 23:973–978 [Google Scholar]

173. Izumi H., Finlay R. D. 2011. Ectomycorrhizal roots select distinctive bacterial and ascomycete communities in Swedish subarctic forests. Environ. Microbiol. 13:819–830 [PubMed] [Google Scholar]

174. Jakobs-Schonwandt D., et al. 2010. Biodegradation of a biocide (Cu-N-cyclohexyldiazenium dioxide) component of a wood preservative by a defined soil bacterial community. Appl. Environ. Microbiol. 76:8076–8083 [PMC free article] [PubMed] [Google Scholar]

175. Jargeat P., et al. 2004. Isolation, free-living capacities, and genome structure of “Candidatus Glomeribacter gigasporarum,” the endocellular bacterium of the mycorrhizal fungus Gigaspora margarita. J. Bacteriol. 186:6876–6884 [PMC free article] [PubMed] [Google Scholar]

176. Jarosz L. M., Deng D. M., van der Mei H. C., Crielaard W., Krom B. P. 2009. Streptococcus mutans competence-stimulating peptide inhibits Candida albicans hypha formation. Eukaryot. Cell 8:1658–1664 [PMC free article] [PubMed] [Google Scholar]

177. Jayasinghearachchi H. S., Seneviratne G. 2006. Fungal solubilization of rock phosphate is enhanced by forming fungal-rhizobial biofilms. Soil Biol. Biochem. 38:405–408 [Google Scholar]

178. Jeffries P., Barea J. 2001. Arbuscular mycorrhiza: a key component of sustainable plant-soil ecosystems, p. 95–113In Hock B. (ed.), The Mycota, vol. 9 Fungal associations. Springer, Berlin, Germany [Google Scholar]

179. Joblin K. N., Naylor G. E., Williams A. G. 1990. Effect of Methanobrevibacter smithii on xylanolytic activity of anaerobic ruminal fungi. Appl. Environ. Microbiol. 56:2287–2295 [PMC free article] [PubMed] [Google Scholar]

180. Johansson J. F., Paul L. R., Finlay R. D. 2004. Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture. FEMS Microbiol. Ecol. 48:1–13 [PubMed] [Google Scholar]

181. Johnsen A. R., Wick L. Y., Harms H. 2005. Principles of microbial PAH-degradation in soil. Environ. Pollut. 133:71–84 [PubMed] [Google Scholar]

182. Joyner P. M., et al. 2010. Mutanobactin A from the human oral pathogen Streptococcus mutans is a cross-kingdom regulator of the yeast-mycelium transition. Org. Biomol. Chem. 8:5486–5489 [PMC free article] [PubMed] [Google Scholar]

183. Jurado V., et al. 2009. The fungal colonisation of rock-art caves: experimental evidence. Naturwissenschaften 96:1027–1034 [PubMed] [Google Scholar]

184. Jussier D., Dube Morneau A., Mira de Orduna R. 2006. Effect of simultaneous inoculation with yeast and bacteria on fermentation kinetics and key wine parameters of cool-climate Chardonnay. Appl. Environ. Microbiol. 72:221–227 [PMC free article] [PubMed] [Google Scholar]

185. Kaltenpoth M., Gottler W., Herzner G., Strohm E. 2005. Symbiotic bacteria protect wasp larvae from fungal infestation. Curr. Biol. 15:475–479 [PubMed] [Google Scholar]

186. Kataoka R., Taniguchi T., Futai K. 2009. Fungal selectivity of two mycorrhiza helper bacteria on five mycorrhizal fungi associated with Pinus thunbergii. World J. Microbiol. Biotechnol. 25:1815–1819 [Google Scholar]

187. Kawarai T., Furukawa S., Ogihara H., Yamasaki M. 2007. Mixed-species biofilm formation by lactic acid bacteria and rice wine yeasts. Appl. Environ. Microbiol. 73:4673–4676 [PMC free article] [PubMed] [Google Scholar]

188. Kemppainen M., Circosta A., Tagu D., Martin F., Pardo A. G. 2005. Agrobacterium-mediated transformation of the ectomycorrhizal symbiont Laccaria bicolor S238N. Mycorrhiza 16:19–22 [PubMed] [Google Scholar]

189. Kerr J. R., et al. 1999. Pseudomonas aeruginosa pyocyanin and 1-hydroxyphenazine inhibit fungal growth. J. Clin. Pathol. 52:385–387 [PMC free article] [PubMed] [Google Scholar]

190. Keuth S., Bisping B. 1993. Formation of vitamins by pure cultures of tempe moulds and bacteria during the tempe solid substrate fermentation. J. Appl. Microbiol. 75:427–434 [PubMed] [Google Scholar]

191. Kim H., et al. 1998. Functional analysis of a hybrid endoglucanase of bacterial origin having a cellulose binding domain from a fungal exoglucanase. Appl. Biochem. Biotechnol. 75:193–204 [PubMed] [Google Scholar]

192. Kimball T. H., Rosemary L. P. 1993. Cyanobacteria and cyanolichens: can they enhance availability of essential minerals for higher plants? Western North Am. Nat. 53:59–72 [Google Scholar]

193. Kirk T. K., Farrell R. L. 1987. Enzymatic “combustion”: the microbial degradation of lignin. Annu. Rev. Microbiol. 41:465–505 [PubMed] [Google Scholar]

194. Klaerner H. G., et al. 1997. Candida albicans and Escherichia coli are synergistic pathogens during experimental microbial peritonitis. J. Surg. Res. 70:161–165 [PubMed] [Google Scholar]

195. Klotz S. A., Chasin B. S., Powell B., Gaur N. K., Lipke P. N. 2007. Polymicrobial bloodstream infections involving Candida species: analysis of patients and review of the literature. Diagn. Microbiol. Infect. Dis. 59:401–406 [PubMed] [Google Scholar]

196. Kluge M. 2002. A fungus eats a cyanobacterium: the story of the Geosiphon pyriformis endocyanosis. Biol. Environ. 102:11–14 [Google Scholar]

197. Kluge M., Mollenhauer D., Mollenhauer R. 1991. Photosynthetic carbon assimilation in Geosiphon pyriforme (Kützing) F. v. Wettstein, an endosymbiotic association of fungus and cyanobacterium. Planta 185:311–315 [PubMed] [Google Scholar]

198. Kluge M., Mollenhauer D., Mollenhauer R., Kape R. 1992. Geosiphon pyriforme, an endosymbiotic consortium of a fungus and a cyanobacterium (Nostoc), fixes nitrogen. Bot. Acta 105:343–344 [Google Scholar]

199. Kluge M., Mollenhauer D., Wolf E., Schüßler A. 2002. The Nostoc-Geosiphon endocytobiosis, p. 19–30In Rai A., Bergman B., Rasmussen U. (ed.), Cyanobacteria in symbiosis. Kluwer Academic Publishers, Dordrecht, Netherlands [Google Scholar]

200. Kobayashi D. Y., Crouch J. A. 2009. Bacterial/fungal interactions: from pathogens to mutualistic endosymbionts. Annu. Rev. Phytopathol. 47:63–82 [PubMed] [Google Scholar]

201. Koele N., Turpault M.-P., Hildebrand E. E., Uroz S., Frey-Klett P. 2009. Interactions between mycorrhizal fungi and mycorrhizosphere bacteria during mineral weathering: budget analysis and bacterial quantification. Soil Biol. Biochem. 41:1935–1942 [Google Scholar]

202. Kohlmeier S., et al. 2005. Taking the fungal highway: mobilization of pollutant-degrading bacteria by fungi. Environ. Sci. Technol. 39:4640–4646 [PubMed] [Google Scholar]

203. Kotterman M. J., Vis E. H., Field J. A. 1998. Successive mineralization and detoxification of benzo[a]pyrene by the white rot fungus Bjerkandera sp.strain BOS55 and indigenous microflora. Appl. Environ. Microbiol. 64:2853–2858 [PMC free article] [PubMed] [Google Scholar]

204. Kroiss J., et al. 2010. Symbiotic streptomycetes provide antibiotic combination prophylaxis for wasp offspring. Nat. Chem. Biol. 6:261–263 [PubMed] [Google Scholar]

205. Lackner G., et al. 2009. Global distribution and evolution of a toxinogenic Burkholderia-Rhizopus symbiosis. Appl. Environ. Microbiol. 75:2982–2986 [PMC free article] [PubMed] [Google Scholar]

206. Lackner G., Moebius N., Hertweck C. 2011. Endofungal bacterium controls its host by an hrp type III secretion system. ISME J. 5:252–261 [PMC free article] [PubMed] [Google Scholar]

207. Lackner G., Moebius N., Partida-Martinez L., Hertweck C. 2011. Complete genome sequence of Burkholderia rhizoxinica, the endosymbiont of Rhizopus microsporus. J. Bacteriol. 193:783–784 [PMC free article] [PubMed] [Google Scholar]

208. Lackner G., Moebius N., Partida-Martinez L. P., Boland S., Hertweck C. 2011. Evolution of an endofungal lifestyle: deductions from the Burkholderia rhizoxinica genome. BMC Genomics 12:210 doi:10.1186/1471-2164-12-210 [PMC free article] [PubMed] [Google Scholar]

209. Lackner G., Partida-Martinez L. P., Hertweck C. 2009. Endofungal bacteria as producers of mycotoxins. Trends Microbiol. 17:570–576 [PubMed] [Google Scholar]

210. Le Calvez T., Burgaud G., Mahe S., Barbier G., Vandenkoornhuyse P. 2009. Fungal diversity in deep-sea hydrothermal ecosystems. Appl. Environ. Microbiol. 75:6415–6421 [PMC free article] [PubMed] [Google Scholar]

211. Lee S. S., Ha J. K., Cheng K. 2000. Relative contributions of bacteria, protozoa, and fungi to in vitro degradation of orchard grass cell walls and their interactions. Appl. Environ. Microbiol. 66:3807–3813 [PMC free article] [PubMed] [Google Scholar]

212. Lehr N. A., Schrey S. D., Bauer R., Hampp R., Tarkka M. T. 2007. Suppression of plant defence response by a mycorrhiza helper bacterium. New Phytol. 174:892–903 [PubMed] [Google Scholar]

213. Lemanceau P., Bakker P. A., De Kogel W. J., Alabouvette C., Schippers B. 1993. Antagonistic effect of nonpathogenic Fusarium oxysporum Fo47 and pseudobactin 358 upon pathogenic Fusarium oxysporum f. sp. dianthi. Appl. Environ. Microbiol. 59:74–82 [PMC free article] [PubMed] [Google Scholar]

214. Lemanceau P., Bakker P. A., De Kogel W. J., Alabouvette C., Schippers B. 1992. Effect of pseudobactin 358 production by Pseudomonas putida WCS358 on suppression of fusarium wilt of carnations by nonpathogenic Fusarium oxysporum Fo47. Appl. Environ. Microbiol. 58:2978–2982 [PMC free article] [PubMed] [Google Scholar]

215. Leone M. R., et al. 2010. An unusual galactofuranose lipopolysaccharide that ensures the intracellular survival of toxin-producing bacteria in their fungal host. Angew. Chem. Int. Ed. Engl. 49:7476–7480 [PubMed] [Google Scholar]

216. Leveau J. H., Preston G. M. 2007. Bacterial mycophagy: definition and diagnosis of a unique bacterial-fungal interaction. New Phytol. 177:859–876 [PubMed] [Google Scholar]

217. Li B., Ravnskov S., Xie G., Larsen J. 2007. Biocontrol of Pythium damping-off in cucumber by arbuscular mycorrhiza-associated bacteria from the genus Paenibacillus. Biocontrol 52:863–875 [Google Scholar]

218. Linares J. F., Gustafsson I., Baquero F., Martinez J. L. 2006. Antibiotics as intermicrobial signaling agents instead of weapons. Proc. Natl. Acad. Sci. U. S. A. 103:19484–19489 [PMC free article] [PubMed] [Google Scholar]

219. Little A. E., Currie C. R. 2008. Black yeast symbionts compromise the efficiency of antibiotic defenses in fungus-growing ants. Ecology 89:1216–1222 [PubMed] [Google Scholar]

220. Little A. E., Currie C. R. 2007. Symbiotic complexity: discovery of a fifth symbiont in the attine ant-microbe symbiosis. Biol. Lett. 3:501–504 [PMC free article] [PubMed] [Google Scholar]

221. Little A. E., Murakami T., Mueller U. G., Currie C. R. 2006. Defending against parasites: fungus-growing ants combine specialized behaviours and microbial symbionts to protect their fungus gardens. Biol. Lett. 2:12–16 [PMC free article] [PubMed] [Google Scholar]

222. Liu C., Hu B., Liu Y., Chen S. 2006. Stimulation of nisin production from whey by a mixed culture of Lactococcus lactis and Saccharomyces cerevisiae. Appl. Biochem. Biotechnol. 131:751–761 [PubMed] [Google Scholar]

223. Liu S.-Q., Tsao M. 2009. Enhancement of survival of probiotic and non-probiotic lactic acid bacteria by yeasts in fermented milk under non-refrigerated conditions. Int. J. Food Microbiol. 135:34–38 [PubMed] [Google Scholar]

224. Lonvaud-Funel A. 2008. Du raisin au vin: l'activité d'un système microbien dynamique. Biofutur 294:26–29 [Google Scholar]

225. Loper J. E., Henkels M. D., Shaffer B. T., Valeriote F. A., Gross H. 2008. Isolation and identification of rhizoxin analogs from Pseudomonas fluorescens Pf-5 by using a genomic mining strategy. Appl. Environ. Microbiol. 74:3085–3093 [PMC free article] [PubMed] [Google Scholar]

226. Lugtenberg B., Kamilova F. 2009. Plant-growth-promoting rhizobacteria. Annu. Rev. Microbiol. 63:541–556 [PubMed] [Google Scholar]

227. Lumini E., Ghignone S., Bianciotto V., Bonfante P. 2006. Endobacteria or bacterial endosymbionts? To be or not to be. New Phytol. 170:205–208 [PubMed] [Google Scholar]

228. Lutz M. P., Wenger S., Maurhofer M., Defa*go G., Duffy B. 2004. Signaling between bacterial and fungal biocontrol agents in a strain mixture. FEMS Microbiol. Ecol. 48:447–455 [PubMed] [Google Scholar]

229. Mahadevan B., Crawford D. L. 1997. Properties of the chitinase of the antifungal biocontrol agent Streptomyces lydicus WYEC108. Enzyme Microb. Technol. 20:489–493 [Google Scholar]

230. Maier A., Riedlinger J., Fiedler H.-P., Hampp R. 2004. Actinomycetales bacteria from a spruce stand: characterization and effects on growth of root symbiotic and plant parasitic soil fungi in dual culture. Mycol. Prog. 3:129–136 [Google Scholar]

231. Maligoy M., Mercade M., Cocaign-Bousquet M., Loubiere P. 2008. Transcriptome analysis of Lactococcus lactis in coculture with Saccharomyces cerevisiae. Appl. Environ. Microbiol. 74:485–494 [PMC free article] [PubMed] [Google Scholar]

232. Mallet L. V., Becq J., Deschavanne P. 2010. Whole genome evaluation of horizontal transfers in the pathogenic fungus Aspergillus fumigatus. BMC Genomics 11:171 doi:10.1186/1471-2164-11-171 [PMC free article] [PubMed] [Google Scholar]

233. Mangan A. 1969. Interactions between some aural Aspergillus species and bacteria. J. Gen. Microbiol. 58:261–266 [PubMed] [Google Scholar]

234. Manjula K., Krishna Kishore G., Girish A. G., Singh S. D. 2004. Combined application of Pseudomonas fluorescens and Trichoderma viride has an improved biocontrol activity against stem rot in groundnut. Plant Pathol. J. 20:75–80 [Google Scholar]

235. Mansour S., et al. 2009. Investigation of associations of Yarrowia lipolytica, Staphylococcus xylosus, and Lactococcus lactis in culture as a first step in microbial interaction analysis. Appl. Environ. Microbiol. 75:6422–6430 [PMC free article] [PubMed] [Google Scholar]

236. Maoz A., Mayr R., Scherer S. 2003. Temporal stability and biodiversity of two complex antilisterial cheese-ripening microbial consortia. Appl. Environ. Microbiol. 69:4012–4018 [PMC free article] [PubMed] [Google Scholar]

237. Marcet-Houben M., Gabaldon T. 2009. Acquisition of prokaryotic genes by fungal genomes. Trends Genet. 26:5–8 [PubMed] [Google Scholar]

238. Mari M., Guizzardi M., Pratella G. C. 1996. Biological control of gray mold in pears by antagonistic bacteria. Biol. Control 7:30–37 [Google Scholar]

239. Marshall K. C., Alexander M. 1960. Competition between soil bacteria and fusarium. Plant Soil 12:143–153 [Google Scholar]

240. Martel C. M., et al. 2011. Expression of bacterial levanase in yeast enables simultaneous saccharification and fermentation of grass juice to bioethanol. Bioresour. Technol. 102:1503–1508 [PubMed] [Google Scholar]

241. Martin F., Tunlid A. 2009. The ectomycorrhizal symbiosis: a marriage of convenience, p. 237–257In Deising H. B. (ed.), The Mycota, 2nd ed., vol. 5 Plant relationships Springer, Berlin, Germany [Google Scholar]

242. Marvin-Sikkema F. D., Richardson A. J., Stewart C. S., Gottschal J. C., Prins R. A. 1990. Influence of hydrogen-consuming bacteria on cellulose degradation by anaerobic fungi. Appl. Environ. Microbiol. 56:3793–3797 [PMC free article] [PubMed] [Google Scholar]

243. Mathew B. P., Nath M. 2009. Recent approaches to antifungal therapy for invasive mycoses. ChemMedChem 4:310–323 [PubMed] [Google Scholar]

244. Mayser P., Fromme S., Leitzmann C., Grunder K. 1995. The yeast spectrum of the ‘tea fungus Kombucha’. Mycoses 38:289–295 [PubMed] [Google Scholar]

245. Melin P., Schnurer J., Wagner E. G. 1999. Changes in Aspergillus nidulans gene expression induced by bafilomycin, a Streptomyces-produced antibiotic. Microbiology 145:1115–1122 [PubMed] [Google Scholar]

246. Melin P., Schnurer J., Wagner E. G. 2002. Proteome analysis of Aspergillus nidulans reveals proteins associated with the response to the antibiotic concanamycin A, produced by Streptomyces species. Mol. Genet. Genomics 267:695–702 [PubMed] [Google Scholar]

247. Melnick R. L., et al. 2008. Bacterial endophytes: Bacillus spp. from annual crops as potential biological control agents of black pod rot of cacao. Biol. Control 46:46–56 [Google Scholar]

248. Miao L., Kwong T. F., Qian P. Y. 2006. Effect of culture conditions on mycelial growth, antibacterial activity, and metabolite profiles of the marine-derived fungus Arthrinium c.f. saccharicola. Appl. Microbiol. Biotechnol. 72:1063–1073 [PubMed] [Google Scholar]

249. Milanesi C., et al. 2006. Fungal deterioration of medieval wall fresco determined by analysing small fragments containing copper. Int. Biodeterior. Biodegradation 57:7–13 [Google Scholar]

250. Mille-Lindblom C., Fischer H., Tranvik L. J. 2006. Antagonism between bacteria and fungi: substrate competition and a possible tradeoff between fungal growth and tolerance towards bacteria. Oikos 113:233–242 [Google Scholar]

251. Mille-Lindblom C., Tranvik L. J. 2003. Antagonism between bacteria and fungi on decomposing aquatic plant litter. Microb. Ecol. 45:173–182 [PubMed] [Google Scholar]

252. Minerdi D., Fani R., Gallo R., Boarino A., Bonfante P. 2001. Nitrogen fixation genes in an endosymbiotic Burkholderia strain. Appl. Environ. Microbiol. 67:725–732 [PMC free article] [PubMed] [Google Scholar]

253. Minerdi D., et al. 2008. Bacterial ectosymbionts and virulence silencing in a Fusarium oxysporum strain. Environ. Microbiol. 10:1725–1741 [PubMed] [Google Scholar]

254. Mingardon F., et al. 2007. Incorporation of fungal cellulases in bacterial minicellulosomes yields viable, synergistically acting cellulolytic complexes. Appl. Environ. Microbiol. 73:3822–3832 [PMC free article] [PubMed] [Google Scholar]

255. Mogge B., Loferer C., Agerer R., Hutzler P., Hartmann A. 2000. Bacterial community structure and colonization patterns of fa*gus sylvatica L. ectomycorrhizospheres as determined by fluorescence in situ hybridization and confocal laser scanning microscopy. Mycorrhiza 9:271–278 [Google Scholar]

256. Moller J., Miller M., Kjoller A. 1999. Fungal-bacterial interaction on beech leaves: influence on decomposition and dissolved organic carbon quality. Soil Biol. Biochem. 31:367–374 [Google Scholar]

257. Morales D. K., et al. 2010. Antifungal mechanisms by which a novel Pseudomonas aeruginosa phenazine toxin kills Candida albicans in biofilms. Mol. Microbiol. 78:1379–1392 [PMC free article] [PubMed] [Google Scholar]

258. Moran N. A. 2002. Microbial minimalism: genome reduction in bacterial pathogens. Cell 108:583–586 [PubMed] [Google Scholar]

259. Moretti M., et al. 2010. A proteomics approach to study synergistic and antagonistic interactions of the fungal-bacterial consortium Fusarium oxysporum wild-type MSA 35. Proteomics 10:3292–3320 [PubMed] [Google Scholar]

260. Mounier J., et al. 2006. Sources of the adventitious microflora of a smear-ripened cheese. J. Appl. Microbiol. 101:668–681 [PubMed] [Google Scholar]

261. Mounier J., et al. 2008. Microbial interactions within a cheese microbial community. Appl. Environ. Microbiol. 74:172–181 [PMC free article] [PubMed] [Google Scholar]

262. Mowat E., et al. 2010. Pseudomonas aeruginosa and their small diffusible extracellular molecules inhibit Aspergillus fumigatus biofilm formation. FEMS Microbiol. Lett. 313:96–102 [PubMed] [Google Scholar]

263. Mueller U. G., Schultz T. R., Currie C. R., Adams R. M., Malloch D. 2001. The origin of the attine ant-fungus mutualism. Q. Rev. Biol. 76:169–197 [PubMed] [Google Scholar]

264. Müller E., Drewello U., Drewello R., Weißmann R., Wuertz S. 2001. In situ analysis of biofilms on historic window glass using confocal laser scanning microscopy. J. Cult. Herit. 2:31–42 [Google Scholar]

265. Muller F. M., Seidler M. 2010. Characteristics of pathogenic fungi and antifungal therapy in cystic fibrosis. Expert Rev. Anti Infect. Ther. 8:957–964 [PubMed] [Google Scholar]

266. Murray A. C., Woodward S. 2003. In vitro interactions between bacteria isolated from Sitka spruce stumps and Heterobasidion annosum. Forest Pathol. 33:53–67 [Google Scholar]

267. Murtoniemi T., Penttinen P., Nevalainen A., Hirvonen M. R. 2005. Effects of microbial cocultivation on inflammatory and cytotoxic potential of spores. Inhal. Toxicol. 17:681–693 [PubMed] [Google Scholar]

268. Mushegian A. A., Peterson C. N., Baker C. C., Pringle A. 2011. Bacterial diversity across individual lichens. Appl. Environ. Microbiol. 77:4249–4252 [PMC free article] [PubMed] [Google Scholar]

269. Mygind P. H., et al. 2005. Plectasin is a peptide antibiotic with therapeutic potential from a saprophytic fungus. Nature 437:975–980 [PubMed] [Google Scholar]

270. Nair N. G., Fahy P. C. 1972. Bacteria antagonistic to Pseudomonas tolaasii and their control of brown blotch of the cultivated mushroom Agaricus bisporus. J. Appl. Bacteriol. 35:439–442 [PubMed] [Google Scholar]

271. Nakamura C. E., Whited G. M. 2003. Metabolic engineering for the microbial production of 1,3-propanediol. Curr. Opin. Biotechnol. 14:454–459 [PubMed] [Google Scholar]

272. Naumann M., Schussler A., Bonfante P. 2010. The obligate endobacteria of arbuscular mycorrhizal fungi are ancient heritable components related to the Mollicutes. ISME J. 4:862–871 [PubMed] [Google Scholar]

273. Nelson K. E., et al. 2010. A catalog of reference genomes from the human microbiome. Science 328:994–999 [PMC free article] [PubMed] [Google Scholar]

274. Neviani E., Gatti M., Vannini L., Gardini F., Suzzi G. 2001. Contribution of Gal-lactic acid bacteria to Saccharomyces cerevisiae metabolic activity in milk. Int. J. Food Microbiol. 69:91–99 [PubMed] [Google Scholar]

275. Newbold C. J., Wallace R. J., Chen X. B., McIntosh F. M. 1995. Different strains of Saccharomyces cerevisiae differ in their effects on ruminal bacterial numbers in vitro and in sheep. J. Anim. Sci. 73:1811–1818 [PubMed] [Google Scholar]

276. Newton A. C., Toth I. K., Neave P., Hyman L. J. 2004. Bacterial inoculum from a previous crop affects fungal disease development on subsequent nonhost crops. New Phytol. 163:133–138 [PubMed] [Google Scholar]

277. Niderkorn V., Boudra H., Morgavi D. P. 2007. Les fusariotoxines: comment limiter leur présence dans les ensilages et leur impact chez les ruminants? Fourrages 189:111–123 [Google Scholar]

278. Nikawa H., et al. 2001. Alteration of the coadherence of Candida albicans with oral bacteria by dietary sugars. Oral Microbiol. Immunol. 16:279–283 [PubMed] [Google Scholar]

279. Nishikawa M., Suzuki K., Yoshida K. 1992. DNA integration into recipient yeast chromosomes by trans-kingdom conjugation between Escherichia coli and Saccharomyces cerevisiae. Curr. Genet. 21:101–108 [PubMed] [Google Scholar]

280. Noble R., et al. 2003. Primordia initiation of mushroom (Agaricus bisporus) strains on axenic casing materials. Mycologia 95:620–629 [PubMed] [Google Scholar]

281. Nouaille S., et al. 2009. Transcriptomic response of Lactococcus lactis in mixed culture with Staphylococcus aureus. Appl. Environ. Microbiol. 75:4473–4482 [PMC free article] [PubMed] [Google Scholar]

282. Noverr M. C., Huffnagle G. B. 2004. Regulation of Candida albicans morphogenesis by fatty acid metabolites. Infect. Immun. 72:6206–6210 [PMC free article] [PubMed] [Google Scholar]

283. Nurmiaho-Lassila E. L., Timonen S., Haahtela K., Sen R. 1997. Bacterial colonization patterns of intact Pinus sylvestris mycorrhizospheres in dry pine forest soil: an electron microscopy study. Can. J. Microbiol. 43:1017–1035 [Google Scholar]

284. Oh D. C., Jensen P. R., Kauffman C. A., Fenical W. 2005. Libertellenones A-D: induction of cytotoxic diterpenoid biosynthesis by marine microbial competition. Bioorg. Med. Chem. 13:5267–5273 [PubMed] [Google Scholar]

285. Oh D. C., Poulsen M., Currie C. R., Clardy J. 2009. Dentigerumycin: a bacterial mediator of an ant-fungus symbiosis. Nat. Chem. Biol. 5:391–393 [PMC free article] [PubMed] [Google Scholar]

286. Oh D. C., Scott J. J., Currie C. R., Clardy J. 2009. Mycangimycin, a polyene peroxide from a mutualist Streptomyces sp. Org. Lett. 11:633–636 [PMC free article] [PubMed] [Google Scholar]

287. Olsson P. A., Wallander H. 1998. Interactions between ectomycorrhizal fungi and the bacterial community in soils amended with various primary minerals. FEMS Microbiol. Ecol. 27:195–205 [Google Scholar]

288. O'May G. A., Reynolds N., Macfarlane G. T. 2005. Effect of pH on an in vitro model of gastric microbiota in enteral nutrition patients. Appl. Environ. Microbiol. 71:4777–4783 [PMC free article] [PubMed] [Google Scholar]

289. O'May G. A., Reynolds N., Smith A. R., Kennedy A., Macfarlane G. T. 2005. Effect of pH and antibiotics on microbial overgrowth in the stomachs and duodena of patients undergoing percutaneous endoscopic gastrostomy feeding. J. Clin. Microbiol. 43:3059–3065 [PMC free article] [PubMed] [Google Scholar]

290. Ostrosky-Zeichner L., Casadevall A., Galgiani J. N., Odds F. C., Rex J. H. 2010. An insight into the antifungal pipeline: selected new molecules and beyond. Nat. Rev. Drug Discov. 9:719–727 [PubMed] [Google Scholar]

291. O'Sullivan J. M., Jenkinson H. F., Cannon R. D. 2000. Adhesion of Candida albicans to oral streptococci is promoted by selective adsorption of salivary proteins to the streptococcal cell surface. Microbiology 146:41–48 [PubMed] [Google Scholar]

292. Page M. G., Heim J. 2009. Prospects for the next anti-Pseudomonas drug. Curr. Opin. Pharmacol. 9:558–565 [PubMed] [Google Scholar]

293. Palla F., Marineo S., Lombardo G., Anello L. 2006. Characterization of bacterial community in indoor environment, p. 361–365In Fort R., Buergo M. Alvarez de, Gomez-Heras M., Vazquez-Calvo C. (ed.),Heritage, weathering, and conservation: proceedings of the international conference, HWC-2006. Taylor & Francis, London, United Kingdom [Google Scholar]

294. Pardo A. G., et al. 2005. T-DNA transfer from Agrobacterium tumefaciens to the ectomycorrhizal fungus Pisolithus microcarpus. Rev. Argent. Microbiol. 37:69–72 [PubMed] [Google Scholar]

295. Partida-Martinez L. P., Bandemer S., Ruchel R., Dannaoui E., Hertweck C. 2008. Lack of evidence of endosymbiotic toxin-producing bacteria in clinical Rhizopus isolates. Mycoses 51:266–269 [PubMed] [Google Scholar]

296. Partida-Martinez L. P., et al. 2007. Rhizonin, the first mycotoxin isolated from the zygomycota, is not a fungal metabolite but is produced by bacterial endosymbionts. Appl. Environ. Microbiol. 73:793–797 [PMC free article] [PubMed] [Google Scholar]

297. Partida-Martinez L. P., et al. 2007. Burkholderia rhizoxinica sp. nov. and Burkholderia endofungorum sp. nov., bacterial endosymbionts of the plant-pathogenic fungus Rhizopus microsporus. Int. J. Syst. Evol. Microbiol. 57:2583–2590 [PubMed] [Google Scholar]

298. Partida-Martinez L. P., Hertweck C. 2005. Pathogenic fungus harbours endosymbiotic bacteria for toxin production. Nature 437:884–888 [PubMed] [Google Scholar]

299. Partida-Martinez L. P., Monajembashi S., Greulich K. O., Hertweck C. 2007. Endosymbiont-dependent host reproduction maintains bacterial-fungal mutualism. Curr. Biol. 17:773–777 [PubMed] [Google Scholar]

300. Pate J. C., Jones D. B., Wilhelmus K. R. 2006. Prevalence and spectrum of bacterial co-infection during fungal keratitis. Br. J. Ophthalmol. 90:289–292 [PMC free article] [PubMed] [Google Scholar]

301. Peleg A. Y., Hogan D. A., Mylonakis E. 2010. Medically important bacterial-fungal interactions. Nat. Rev. Microbiol. 8:340–349 [PubMed] [Google Scholar]

302. Penalva M. A., Arst H. N., Jr 2002. Regulation of gene expression by ambient pH in filamentous fungi and yeasts. Microbiol. Mol. Biol. Rev. 66:426–446 [PMC free article] [PubMed] [Google Scholar]

303. Peng X., Sun J., Michiels C., Iserentant D., Verachtert H. 2001. Decrease in cell surface galactose residues of Schizosaccharomyces pombe enhances its coflocculation with Pediococcus damnosus. Appl. Environ. Microbiol. 67:3413–3417 [PMC free article] [PubMed] [Google Scholar]

304. Penttinen P., Huttunen K., Pelkonen J., Hirvonen M. R. 2005. The proportions of Streptomyces californicus and Stachybotrys chartarum in simultaneous exposure affect inflammatory responses in mouse RAW264.7 macrophages. Inhal. Toxicol. 17:79–85 [PubMed] [Google Scholar]

305. Penttinen P., Pelkonen J., Huttunen K., Toivola M., Hirvonen M. R. 2005. Interactions between Streptomyces californicus and Stachybotrys chartarum can induce apoptosis and cell cycle arrest in mouse RAW264.7 macrophages. Toxicol. Appl. Pharmacol. 202:278–288 [PubMed] [Google Scholar]

306. Peters B. M., et al. 2010. Microbial interactions and differential protein expression in Staphylococcus aureus-Candida albicans dual-species biofilms. FEMS Immunol. Med. Microbiol. 59:493–503 [PMC free article] [PubMed] [Google Scholar]

307. Peyvast G., Olfati J. A., Kariminia A., Fallah A. 2009. Rhizobia as biofertilizer for oyster mushroom cultivation. J. Pure Appl. Microbiol. 3:421–424 [Google Scholar]

308. Pfaller M. A., Diekema D. J. 2007. Epidemiology of invasive candidiasis: a persistent public health problem. Clin. Microbiol. Rev. 20:133–163 [PMC free article] [PubMed] [Google Scholar]

309. Pierce G. E. 2005. Pseudomonas aeruginosa, Candida albicans, and device-related nosocomial infections: implications, trends, and potential approaches for control. J. Ind. Microbiol. Biotechnol. 32:309–318 [PubMed] [Google Scholar]

310. Pinto-Tomas A. A., et al. 2009. Symbiotic nitrogen fixation in the fungus gardens of leaf-cutter ants. Science 326:1120–1123 [PubMed] [Google Scholar]

311. Pivato B., et al. 2009. Bacterial effects on arbuscular mycorrhizal fungi and mycorrhiza development as influenced by the bacteria, fungi, and host plant. Mycorrhiza 19:81–90 [PubMed] [Google Scholar]

312. Preston G., Studholme D., Caldelari I. 2005. Profiling the secretomes of plant pathogenic Proteobacteria. FEMS Microbiol. Rev. 29:331–360 [PubMed] [Google Scholar]

313. Qin J., et al. 2010. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464:59–65 [PMC free article] [PubMed] [Google Scholar]

314. Rainey P. 1991. Effect of Pseudomonas putida on hyphal growth of Agaricus bisporus. Mycol. Res. 95:699–704 [Google Scholar]

315. Rainey P. 1991. Phenotypic variation of Pseudomonas putida and P. tolaasii affects attachment to Agaricus bisporus mycelium. J. Gen. Microbiol. 137:2769–2779 [PubMed] [Google Scholar]

316. Rainey P., Cole A., Fermor T., Wood D. 1990. A model system for examining involvement of bacteria in basidiodome initiation of Agaricus bisporus. Mycol. Res. 94:191–195 [Google Scholar]

317. Rainey P. B., Brodey C. L., Johnstone K. 1992. Biology of Pseudomonas tolaasii, cause of brown blotch disease of the cultivated mushroom. Adv. Plant Pathol. 8:95–117 [Google Scholar]

318. Rasmussen T. B., et al. 2005. Identity and effects of quorum-sensing inhibitors produced by Penicillium species. Microbiology 151:1325–1340 [PubMed] [Google Scholar]

319. Remize F., Augagneur Y., Guilloux-Benatier M., Guzzo J. 2005. Effect of nitrogen limitation and nature of the feed upon Oenococcus oeni metabolism and extracellular protein production. J. Appl. Microbiol. 98:652–661 [PubMed] [Google Scholar]

320. Renouf V., Claisse O., Lonvaud-Funel A. 2007. Inventory and monitoring of wine microbial consortia. Appl. Microbiol. Biotechnol. 75:149–164 [PubMed] [Google Scholar]

321. Requena N., Jimenez I., Toro M., Barea J. M. 1997. Interactions between plant-growth-promoting rhizobacteria (PGPR), arbuscular mycorrhizal fungi and Rhizobium spp. in the rhizosphere of Anthyllis cytisoides, a model legume for revegetation in Mediterranean semi-arid ecosystems. New Phytol. 136:667–677 [PubMed] [Google Scholar]

322. Richards T. A., Dacks J. B., Jenkinson J. M., Thornton C. R., Talbot N. J. 2006. Evolution of filamentous plant pathogens: gene exchange across eukaryotic kingdoms. Curr. Biol. 16:1857–1864 [PubMed] [Google Scholar]

323. Riedlinger J., et al. 2006. Auxofuran, a novel metabolite that stimulates the growth of fly agaric, is produced by the mycorrhiza helper bacterium Streptomyces strain AcH 505. Appl. Environ. Microbiol. 72:3550–3557 [PMC free article] [PubMed] [Google Scholar]

324. Rikhvanov E. G., Varakina N. N., Sozinov D. Y., Voinikov V. K. 1999. Association of bacteria and yeasts in hot springs. Appl. Environ. Microbiol. 65:4292–4293 [PMC free article] [PubMed] [Google Scholar]

325. Rikkinen J., Oksanen I., Lohtander K. 2002. Lichen guilds share related cyanobacterial symbionts. Science 297:357. [PubMed] [Google Scholar]

326. Rohm B., Scherlach K., Mobius N., Partida-Martinez L. P., Hertweck C. 2010. Toxin production by bacterial endosymbionts of a Rhizopus microsporus strain used for tempe/sufu processing. Int. J. Food Microbiol. 136:368–371 [PubMed] [Google Scholar]

327. Roller S. 1999. Physiology of food spoilage organisms. Int. J. Food Microbiol. 50:151–153 [PubMed] [Google Scholar]

328. Romano J., Kolter R. 2005. Pseudomonas-Saccharomyces interactions: influence of fungal metabolism on bacterial physiology and survival. J. Bacteriol. 187:940–948 [PMC free article] [PubMed] [Google Scholar]

329. Rousk J., et al. 2010. Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J. 4:1340–1351 [PubMed] [Google Scholar]

330. Sajben E., Manczinger L., Nagy A., Kredics L., Vagvolgyi C. 2010. Characterization of pseudomonads isolated from decaying sporocarps of oyster mushroom. Microbiol. Res. 166:255–267 [PubMed] [Google Scholar]

331. Salvioli A., et al. 2010. Endobacteria affect the metabolic profile of their host Gigaspora margarita, an arbuscular mycorrhizal fungus. Environ. Microbiol. 12:2083–2095 [PubMed] [Google Scholar]

332. Sanguin H., Sarniguet A., Gazengel K., Moenne-Loccoz Y., Grundmann G. L. 2009. Rhizosphere bacterial communities associated with disease suppressiveness stages of take-all decline in wheat monoculture. New Phytol. 184:694–707 [PubMed] [Google Scholar]

333. Santos A., et al. 2009. Application of molecular techniques to the elucidation of the microbial community structure of antique paintings. Microb. Ecol. 58:692–702 [PubMed] [Google Scholar]

334. Sarand I., et al. 1998. Microbial biofilms and catabolic plasmid harbouring degradative fluorescent pseudomonads in Scots pine mycorrhizospheres developed on petroleum contaminated soil. FEMS Microbiol. Ecol. 27:115–126 [Google Scholar]

335. Sarniguet A., Lucas P., Lucas M., Samson R. 1992. Soil conduciveness to take-all of wheat: influence of the nitrogen fertilizers on the structure of populations of fluorescent pseudomonads. Plant Soil 145:29–36 [Google Scholar]

336. Sathe S. J., Nawani N. N., Dhakephalkar P. K., Kapadnis B. P. 2007. Antifungal lactic acid bacteria with potential to prolong shelf-life of fresh vegetables. J. Appl. Microbiol. 103:2622–2628 [PubMed] [Google Scholar]

337. Sato Y., et al. 2009. Detection of Betaproteobacteria inside the mycelium of the fungus Mortierella elongata. Microbes Environ. 25:321–324 [PubMed] [Google Scholar]

338. Sbrana C., et al. 2002. Diversity of culturable bacterial populations associated to Tuber borchii ectomycorrhizas and their activity on T. borchii mycelial growth. FEMS Microbiol. Lett. 211:195–201 [PubMed] [Google Scholar]

339. Sbrana C., et al. 2000. Adhesion to hyphal matrix and antifungal activity of Pseudomonas strains isolated from Tuber borchii ascocarps. Can. J. Microbiol. 46:259–268 [PubMed] [Google Scholar]

340. Scanlan P. D., Marchesi J. R. 2008. Micro-eukaryotic diversity of the human distal gut microbiota: qualitative assessment using culture-dependent and -independent analysis of faeces. ISME J. 2:1183–1193 [PubMed] [Google Scholar]

341. Scherlach K., Partida-Martinez L. P., Dahse H. M., Hertweck C. 2006. Antimitotic rhizoxin derivatives from a cultured bacterial endosymbiont of the rice pathogenic fungus Rhizopus microsporus. J. Am. Chem. Soc. 128:11529–11536 [PubMed] [Google Scholar]

342. Scherwinski K., Grosch R., Berg G. 2008. Effect of bacterial antagonists on lettuce: active biocontrol of Rhizoctonia solani and negligible, short-term effects on nontarget microorganisms. FEMS Microbiol. Ecol. 64:106–116 [PubMed] [Google Scholar]

343. Schmitt I., Lumbsch H. T. 2009. Ancient horizontal gene transfer from bacteria enhances biosynthetic capabilities of fungi. PLoS One 4:e4437 doi:10.1371/journal.pone.0004437 [PMC free article] [PubMed] [Google Scholar]

344. Schmitt I., et al. 2008. Evolution of host resistance in a toxin-producing bacterial-fungal alliance. ISME J. 2:632–641 [PubMed] [Google Scholar]

345. Schneider T., et al. 2010. Plectasin, a fungal defensin, targets the bacterial cell wall precursor lipid II. Science 328:1168–1172 [PubMed] [Google Scholar]

346. Schnürer J., Magnusson J. 2005. Antifungal lactic acid bacteria as biopreservatives. Trends Food Sci. Technol. 16:70–78 [Google Scholar]

347. Schoonbeek H. J., Jacquat-Bovet A. C., Mascher F., Metraux J. P. 2007. Oxalate-degrading bacteria can protect Arabidopsis thaliana and crop plants against Botrytis cinerea. Mol. Plant Microbe Interact. 20:1535–1544 [PubMed] [Google Scholar]

348. Schoonbeek H. J., Raaijmakers J. M., De Waard M. A. 2002. Fungal ABC transporters and microbial interactions in natural environments. Mol. Plant Microbe Interact. 15:1165–1172 [PubMed] [Google Scholar]

349. Schouten A., Maksimova O., Cuesta-Arenas Y., van den Berg G., Raaijmakers J. M. 2008. Involvement of the ABC transporter BcAtrB and the laccase BcLCC2 in defence of Botrytis cinerea against the broad-spectrum antibiotic 2,4-diacetylphloroglucinol. Environ. Microbiol. 10:145–157 [PubMed] [Google Scholar]

350. Schouten A., et al. 2004. Defense responses of Fusarium oxysporum to 2,4-diacetylphloroglucinol, a broad-spectrum antibiotic produced by Pseudomonas fluorescens. Mol. Plant Microbe Interact. 17:1201–1211 [PubMed] [Google Scholar]

351. Schrey S. D., et al. 2007. Interaction with mycorrhiza helper bacterium Streptomyces sp. AcH 505 modifies organisation of actin cytoskeleton in the ectomycorrhizal fungus Amanita muscaria (fly agaric). Curr. Genet. 52:77–85 [PubMed] [Google Scholar]

352. Schrey S. D., Schellhammer M., Ecke M., Hampp R., Tarkka M. T. 2005. Mycorrhiza helper bacterium Streptomyces AcH 505 induces differential gene expression in the ectomycorrhizal fungus Amanita muscaria. New Phytol. 168:205–216 [PubMed] [Google Scholar]

353. Schroeckh V., et al. 2009. Intimate bacterial-fungal interaction triggers biosynthesis of archetypal polyketides in Aspergillus nidulans. Proc. Natl. Acad. Sci. U. S. A. 106:14558–14563 [PMC free article] [PubMed] [Google Scholar]

354. Schulze J., Sonnenborn U. 2009. Yeasts in the gut: from commensals to infectious agents. Dtsch. Arztebl. Int. 106:837–842 [PMC free article] [PubMed] [Google Scholar]

355. Schüßler A., Bonfante P., Schnepf E., Mollenhauer D., Kluge M. 1996. Characterization of the Geosiphon pyriforme symbiosome by affinity techniques: confocal laser scanning microscopy (CLSM) and electron microscopy. Protoplasma 190:53–67 [Google Scholar]

356. Schussler A., Martin H., Cohen D., Fitz M., Wipf D. 2006. Characterization of a carbohydrate transporter from symbiotic glomeromycotan fungi. Nature 444:933–936 [PubMed] [Google Scholar]

357. Scott J. J., et al. 2008. Bacterial protection of beetle-fungus mutualism. Science 322:63. [PMC free article] [PubMed] [Google Scholar]

358. Scupham A. J., et al. 2006. Abundant and diverse fungal microbiota in the murine intestine. Appl. Environ. Microbiol. 72:793–801 [PMC free article] [PubMed] [Google Scholar]

359. Seidler R. J., Aho P. E., Raju P. N., Evans H. J. 1972. Nitrogen fixation by bacterial isolates from decay in living white fir trees [Abies concolor (Gord. and Glend.) Lindl.]. Microbiology 73:413–416 [Google Scholar]

360. Seigle-Murandi F., Guiraud P., Croize J., Falsen E., Eriksson K. L. 1996. Bacteria are omnipresent on Phanerochaete chrysosporium Burdsall. Appl. Environ. Microbiol. 62:2477–2481 [PMC free article] [PubMed] [Google Scholar]

361. Sen R. 2001. Microbial biofilms in the mycorrhizospheres of Scots pine: organization and functioning as an ‘external rumen/gut’ in boreal forest soils, abstr. MO.050, p. 121 Abstr. 9th Int. Symp. Microb. Ecol., Amsterdam, Netherlands, 26 to 31 August 2001 [Google Scholar]

362. Seneviratne G., Indrasena I. K. 2006. Nitrogen fixation in lichens is important for improved rock weathering. J. Biosci. 31:639–643 [PubMed] [Google Scholar]

363. Seneviratne G., Tennakoon N. S., Weerasekara M. L. M. A. W., Nandasena K. A. 2006. Polyethylene biodegradation by a developed Penicillium-Bacillus biofilm. Curr. Sci. 90:20–21 [Google Scholar]

364. Seneviratne G., Zavahir J. S., Bandara W. M. M. S., Weerasekara M. L. M. A. W. 2008. Fungal-bacterial biofilms: their development for novel biotechnological applications. World J. Microbiol. Biotechnol. 24:739–743 [Google Scholar]

365. Sharma M., et al. 2008. Detection and identification of bacteria intimately associated with fungi of the order Sebacinales. Cell. Microbiol. 10:2235–2246 [PubMed] [Google Scholar]

366. Shirtliff M. E., Peters B. M., Jabra-Rizk M. A. 2009. Cross-kingdom interactions: Candida albicans and bacteria. FEMS Microbiol. Lett. 299:1–8 [PMC free article] [PubMed] [Google Scholar]

367. Sieuwerts S., de Bok F. A., Hugenholtz J., van Hylckama Vlieg J. E. 2008. Unraveling microbial interactions in food fermentations: from classical to genomics approaches. Appl. Environ. Microbiol. 74:4997–5007 [PMC free article] [PubMed] [Google Scholar]

368. Siggers K. A., Lesser C. F. 2008. The yeast Saccharomyces cerevisiae: a versatile model system for the identification and characterization of bacterial virulence proteins. Cell Host Microbe 4:8–15 [PMC free article] [PubMed] [Google Scholar]

369. Silverman R. J., Nobbs A. H., Vickerman M. M., Barbour M. E., Jenkinson H. F. 2010. Interaction of Candida albicans cell wall Als3 protein with Streptococcus gordonii SspB adhesin promotes development of mixed-species communities. Infect. Immun. 78:4644–4652 [PMC free article] [PubMed] [Google Scholar]

370. Singh B. K., et al. 2008. Relationship between assemblages of mycorrhizal fungi and bacteria on grass roots. Environ. Microbiol. 10:534–541 [PubMed] [Google Scholar]

371. Sivan A., Chet I. 1989. The possible role of competition between Trichoderma harzianum and Fusarium oxysporum on rhizosphere colonization. Phytopathology 79:198–203 [Google Scholar]

372. Smith M. G., Des Etages S. G., Snyder M. 2004. Microbial synergy via an ethanol-triggered pathway. Mol. Cell. Biol. 24:3874–3884 [PMC free article] [PubMed] [Google Scholar]

373. Soler-Rivas C., Arpin N., Olivier J., Wichers H. 1999. WLIP, a lipodepsipeptide of Pseudomonas ‘reactans’, as inhibitor of the symptoms of the brown blotch disease of Agaricus bisporus. J. Appl. Microbiol. 86:635–641 [Google Scholar]

374. Soler-Rivas C., Jolivet S., Arpin N., Olivier J., Wichers H. 1999. Biochemical and physiological aspects of brown blotch disease of Agaricus bisporus. FEMS Microbiol. Rev. 23:591–614 [PubMed] [Google Scholar]

375. Sonnenburg J. L., Angenent L. T., Gordon J. I. 2004. Getting a grip on things: how do communities of bacterial symbionts become established in our intestine? Nat. Immunol. 5:569–573 [PubMed] [Google Scholar]

376. Spano G., Massa S. 2006. Environmental stress response in wine lactic acid bacteria: beyond Bacillus subtilis. Crit. Rev. Microbiol. 32:77–86 [PubMed] [Google Scholar]

377. Stachelhaus T., Schneider A., Marahiel M. A. 1995. Rational design of peptide antibiotics by targeted replacement of bacterial and fungal domains. Science 269:69–72 [PubMed] [Google Scholar]

378. Stomeo F., Portillo M., Gonzalez J. 2009. Assessment of bacterial and fungal growth on natural substrates: consequences for preserving caves with prehistoric paintings. Curr. Microbiol. 59:321–325 [PubMed] [Google Scholar]

379. Tarkka M. T., Sarniguet A., Frey-Klett P. 2009. Inter-kingdom encounters: recent advances in molecular bacterium-fungus interactions. Curr. Genet. 55:233–243 [PubMed] [Google Scholar]

380. Tilak K., Li C., Ho I. 1989. Occurrence of nitrogen-fixing Azospirillum in vesicular-arbuscular mycorrhizal fungi. Plant Soil 116:286–288 [Google Scholar]

381. Tolaas A. G. 1915. A bacterial disease of cultivated mushrooms. Phytopathology 5:51–54 [Google Scholar]

382. Toro M., Azcon R., Barea J. 1997. Improvement of arbuscular mycorrhiza development by inoculation of soil with phosphate-solubilizing rhizobacteria to improve rock phosphate bioavailability (32P) and nutrient cycling. Appl. Environ. Microbiol. 63:4408–4412 [PMC free article] [PubMed] [Google Scholar]

383. Tucker C. M., Routien J. B. 1942. The mummy disease of cultivated mushrooms. Bull. Mo. Agric. Exp. Station 358:1–27 [Google Scholar]

384. Upadhaya S. D., Park M. A., Ha J. K. 2010. Mycotoxins and their biotransformation in the rumen: a review. Asian-Aust. J. Anim. Sci. 23:1250–1260 [Google Scholar]

385. Uroz S., Calvaruso C., Turpault M. P., Frey-Klett P. 2009. Mineral weathering by bacteria: ecology, actors and mechanisms. Trends Microbiol. 17:378–387 [PubMed] [Google Scholar]

386. Uroz S., et al. 2007. Effect of the mycorrhizosphere on the genotypic and metabolic diversity of the bacterial communities involved in mineral weathering in a forest soil. Appl. Environ. Microbiol. 73:3019–3027 [PMC free article] [PubMed] [Google Scholar]

387. Uroz S., Heinonsalo J. 2008. Degradation of N-acyl hom*oserine lactone quorum sensing signal molecules by forest root-associated fungi. FEMS Microbiol. Ecol. 65:271–278 [PubMed] [Google Scholar]

388. Urzì C., De Leo F., Bruno L., Albertano P. 2010. Microbial diversity in paleolithic caves: a study case on the phototrophic biofilms of the cave of bats (Zuheros, Spain). Microb. Ecol. 60:116–129 [PubMed] [Google Scholar]

389. Valaskova V., de Boer W., Gunnewiek P. J., Pospisek M., Baldrian P. 2009. Phylogenetic composition and properties of bacteria coexisting with the fungus Hypholoma fasciculare in decaying wood. ISME J. 3:1218–1221 [PubMed] [Google Scholar]

390. van Rij E. T., Girard G., Lugtenberg B. J., Bloemberg G. V. 2005. Influence of fusaric acid on phenazine-1-carboxamide synthesis and gene expression of Pseudomonas chlororaphis strain PCL1391. Microbiology 151:2805–2814 [PubMed] [Google Scholar]

391. Villegas J., Fortin J. A. 2002. Phosphorus solubilization and pH changes as a result of the interactions between soil bacteria and arbuscular mycorrhizal fungi on a medium containing NO3− as nitrogen source. Can. J. Bot. 80:571–576 [Google Scholar]

392. Vivas M., Sacristan M., Legaz M. E., Vicente C. 2010. The cell recognition model in chlorolichens involving a fungal lectin binding to an algal ligand can be extended to cyanolichens. Plant Biol. 12:615–621 [PubMed] [Google Scholar]

393. Wade W. N., Beuchat L. R. 2003. Metabiosis of proteolytic moulds and Salmonella in raw, ripe tomatoes. J. Appl. Microbiol. 95:437–450 [PubMed] [Google Scholar]

394. Wade W. N., Beuchat L. R. 2003. Proteolytic fungi isolated from decayed and damaged raw tomatoes and implications associated with changes in pericarp pH favorable for survival and growth of foodborne pathogens. J. Food Prot. 66:911–917 [PubMed] [Google Scholar]

395. Wade W. N., Vasdinnyei R., Deak T., Beuchat L. R. 2003. Proteolytic yeasts isolated from raw, ripe tomatoes and metabiotic association of Geotrichum candidum with Salmonella. Int. J. Food Microbiol. 86:101–111 [PubMed] [Google Scholar]

396. Wallace D. F., Cook S. R., Dickinson D. J. 2008. The role of non-decay microorganisms in the degradation of organic wood preservatives. Dev. Commer. Wood Preservatives 982:312–322 [Google Scholar]

397. Wargo M. J., Hogan D. A. 2006. Fungal-bacterial interactions: a mixed bag of mingling microbes. Curr. Opin. Microbiol. 9:359–364 [PubMed] [Google Scholar]

398. Weller D. M. 1988. Biological control of soilborne plant pathogens in the rhizosphere with bacteria. Annu. Rev. Phytopathol. 26:379–407 [Google Scholar]

399. Weller D. M. 2007. Pseudomonas biocontrol agents of soilborne pathogens: looking back over 30 years. Phytopathology 97:250–256 [PubMed] [Google Scholar]

400. Weller D. M., Raaijmakers J. M., Gardener B. B., Thomashow L. S. 2002. Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annu. Rev. Phytopathol. 40:309–348 [PubMed] [Google Scholar]

401. Wenzl P., Wong L., Kwang-won K., Jefferson R. A. 2005. A functional screen identifies lateral transfer of beta-glucuronidase (gus) from bacteria to fungi. Mol. Biol. Evol. 22:308–316 [PubMed] [Google Scholar]

402. Whipps J. M. 2001. Microbial interactions and biocontrol in the rhizosphere. J. Exp. Bot. 52:487–511 [PubMed] [Google Scholar]

403. Wichmann G., Sun J., Dementhon K., Glass N. L., Lindow S. E. 2008. A novel gene, phcA from Pseudomonas syringae induces programmed cell death in the filamentous fungus Neurospora crassa. Mol. Microbiol. 68:672–689 [PubMed] [Google Scholar]

404. Wick L. Y., et al. 2007. Effect of fungal hyphae on the access of bacteria to phenanthrene in soil. Environ. Sci. Technol. 41:500–505 [PubMed] [Google Scholar]

405. Wiesel I., Rehm H. J., Bisping B. 1997. Improvement of tempe fermentations by application of mixed cultures consisting of Rhizopus sp. and bacterial strains. Appl. Microbiol. Biotechnol. 47:218–225 [Google Scholar]

406. Wohl D. L., McArthur J. V. 2001. Aquatic actinomycete-fungal interactions and their effects on organic matter decomposition: a microcosm study. Microb. Ecol. 42:446–457 [PubMed] [Google Scholar]

407. Wong W., Fletcher J., Unsworth B., Preece T. 1982. A note on ginger blotch, a new bacterial disease of the cultivated mushroom Agaricus bisporus. J. Appl. Bacteriol. 52:43–48 [Google Scholar]

408. Wood B. J. B. 1998. Microbiology of fermented foods, 2nd ed. Springer, Berlin, Germany [Google Scholar]

409. Wu X., et al. 2008. Saccharomyces boulardii ameliorates Citrobacter rodentium-induced colitis through actions on bacterial virulence factors. Am. J. Physiol. Gastrointest. Liver Physiol. 294:G295–G306 [PubMed] [Google Scholar]

410. Yoo K. S., et al. 2010. Improvement in sensory characteristics of Campbell Early wine by adding dual starters of Saccharomyces cerevisiae and Oenococcus oeni. J. Microbiol. Biotechnol. 20:1121–1127 [PubMed] [Google Scholar]

411. Zanello G., Meurens F., Berri M., Salmon H. 2009. Saccharomyces boulardii effects on gastrointestinal diseases. Curr. Issues Mol. Biol. 11:47–58 [PubMed] [Google Scholar]

Bacterial-Fungal Interactions: Hyphens between Agricultural, Clinical, Environmental, and Food Microbiologists (2024)
Top Articles
16 Things to Know About the No Contact Rule Female Psychology
Can The No Contact Rule Work Twice If You've Been Dumped?
Joanna Gaines Coleslaw
Jennette McCurdy's 3 Brothers: All About Dustin, Marcus and Scott
Lexington Market Junkies
The Fat Soluble Vitamins Are Weegy
How Rotten Tomatoes Actually Works
Puretalkusa.com/Amac
Understanding Sheryl Crow's Impressive Net Worth And Wealth
Abigail Letts O'brien Obituary
Walmart Careers Stocker
Todoroki Oc
Freedom Powersports Mcdonough Photos
Das E-Mail Center im Web - für E-Mail @t-online.de der Telekom
Kate Shumskaya Only Fans Leaked
Queens University of Charlotte
Safelite Paris Tn
2007 Peterbilt 387 Fuse Box Diagram
Just Breath Chords
Fatima Diame - Best Physiques
Sandiego.craigslist.com
Think Up Elar Level 5 Answer Key Pdf
TheFanBus Free: The Ultimate Guide To Enjoying Your Favorite Events
Caroline Cps.powerschool.com
Different distance with GPS/Ultratrack - Instinct - Outdoor Recreation Archive
Eulogy Zero Ror2
Carolina Cooks Charlotte Nc
Mike Matusow Wheelchair
Ffxiv Icetrap Leaf
Missing 2023 Showtimes Near Cinemark Chesapeake Square
12 Silent Manga Omnibus
Official Columbus Blue Jackets Website | Columbus Blue Jackets
Weekly Math Review Q4 4 Answer Key | airSlate SignNow
Craigslist St Paul Mn Cars
Osrs Bowfa Max Hit
Cocaine Bear Showtimes Near Phoenix Theatres Laurel Park
Wilsonville Costco Gas Prices
Tamilblasters Download
Pizza Hut Doordash Promo Code
Bbc Weather Milton Keynes
Ati Nurses Touch The Leader Case 4
Straightup Internet Hotspot Pass
Opensky Application Status
Prinzessin Lillifee Muffins Rezepte | Chefkoch
Rcs Carnival Laveen Az
Integral Calculator: Step-by-Step Solutions - Wolfram|Alpha
Wave Imaging San Clemente Reviews
Stream - Watch Now at Emagine Entertainment Theatres
Myhr North Memorial
ESET ranked among significant vendors in prestigious Mobile Threat Defense Solutions report
9 Best Things To Do In Charming Surprise, Arizona
Metro Pcs Locations Near Me
Latest Posts
Article information

Author: Nathanial Hackett

Last Updated:

Views: 6077

Rating: 4.1 / 5 (52 voted)

Reviews: 91% of readers found this page helpful

Author information

Name: Nathanial Hackett

Birthday: 1997-10-09

Address: Apt. 935 264 Abshire Canyon, South Nerissachester, NM 01800

Phone: +9752624861224

Job: Forward Technology Assistant

Hobby: Listening to music, Shopping, Vacation, Baton twirling, Flower arranging, Blacksmithing, Do it yourself

Introduction: My name is Nathanial Hackett, I am a lovely, curious, smiling, lively, thoughtful, courageous, lively person who loves writing and wants to share my knowledge and understanding with you.