CE RED Testing and Certification of Helium Compatible Gateways | Helium Documentation (2024)

This page has not been fully updated to represent the latest state of the HeliumNetwork following the migration to Solana on April18,2023.

Introduction

Helium hotspots (miners) operate in the EU868, also known as the EU863-870 MHz unlicensed band, asmodified LoRaWAN compatible gateways. Currently the Helium system operates on 200 kHz channelfrequencies from 868.1 to 868.8 MHz in the EU868 band.

The CE Radio Equipment Directive, also known as CE RED, covers regulatory certification for all EUmember states. Other regulatory country bodies, such as Australia, some Middle Eastern, and Africancountries also accept CE RED certification testing. CE RED is the most commonly accepted testing inmany countries around the world.

Using CE pre-certified LoRaWAN gateway concentrator modules based on Semtech Corcell card designsfrom marketplace suppliers can assist in the development of a new gateway product but these may ormay not include all the required certifications for Helium system support. As discussed in severalsections of this application note, not all EU member states are harmonised with their technicalspecifications. It is the ultimate responsibility of manufacturers providing Helium compatiblenetwork products that proper regulatory testing and certification or recertification is obtained forcountries of intended operation.

In this application note the term gateway and hotspot are used interchangeably.

Glossary

  • BW: Bandwidth
  • e.r.p.: Effective Radiated Power
  • ETSI: European Telecommunications Standards Institute
  • EU: European Union
  • EUT: Equipment Under Test
  • LoRa: Long Range radio modulation technique
  • LoRaWAN™: LoRa low power Wide Area Network protocol
  • mW: milli-Watts
  • PoC: Helium Proof of Coverage function
  • RED: Radio Equipment Directive
  • RF: Radio Frequency
  • RX: Receive / Receiver
  • SF: Spreading Factor
  • TX: Transmit / Transmitter

References

CE RED Certification Requirements

Helium gateways currently operate on 9 frequencies in the 867 to 869 MHz range and are regulated byETSI standards. An additional channel at 869.525 MHz is supported by the gateway as a downlinkreceive slot 2 (RX2) frequency. The Helium gateways meet current LoRaWAN specifications TS001-1.0.4and RP002-1.0.3, the document links are given in the references section above. To meet ETSIrequirements transmissions are duty cycle limited and do not use listen-before-talk protocol whichrequire different testing.

The Helium frequency chart for EU868 operation is shown below. Note that uplink (transmissions tothe gateway) and downlink (transmissions from the gateway) frequencies are the same with no offsets.These are the minimum frequencies required for operation on the Helium network. Developers may wantto test and certify for a wider EU868 frequency range of 863 through 870 MHz, 35 channels withseparations of 200 kHz, for possible future frequency expansions or the use of alternate frequenciesin some regions. It is important to note that additional frequency ranges, such as band K (863 – 865MHz), have lower transmit duty cycle requirements.

Helium Uplink and Downlink (RX1) Frequencies

Frequency (MHZ)Spreading Factor
868.1SF7BW125 to SF12BW125
868.3SF7BW125 to SF12BW125 and SF7BW250
868.5SF7BW125 to SF12BW125
867.1SF7BW125 to SF12BW125
867.3SF7BW125 to SF12BW125
867.5SF7BW125 to SF12BW125
867.7SF7BW125 to SF12BW125
867.9SF7BW125 to SF12BW125
868.8FSK

Helium Downlink RX2

Frequency (MHZ)Spreading Factor
869.525SF12BW125

ETSI Testing Requirements

ETSI standards define acceptable test procedures and limits. There are two applicable ETSIspecifications, EN 300-220-1 V3.1.1 (Part 1) and EN 300-200-2 V3.1.1 (Part 2). Note that the ETSIspecification EN 300-220-1 was split into these two parts with the latest versions V3.1.1 in 2017.The Part 2 specification provides a “Harmonised Standard” for short range devices in the 25 to 1000MHz frequency range while the Part 1 specification gives details for “Technical characteristics andmethods of measurement”. Overall, Part 2 lists frequency bands and RF regulations for these bandsand points the reader to the applicable sections in Part 1 for specifics of measurement methods. TheEU868 (863 – 870 MHz) frequency range is broken up into many sub-bands with different power and dutycycle requirements which are defined in the Part 2 specification.

Since these specifications are linked, the required test explanations below for LoRaWAN / Heliumgateway certification will have the applicable sections of EN 300-220-2 and EN 300-220-1 listed.

ETSI EN 300-220-1 4.3.3 defines normal test conditions and the following section 4.3.4 definesextreme test conditions. Extreme conditions require additional testing over temperature and sourcevoltage variations depending on the operational profile defined by the manufacturer. Some standardsonly require testing at normal conditions while others also require testing at extreme testingconditions.

EN 300-220-2 4.2.1 / EN 300-220-1 5.1.1 Operating Frequency

The manufacturer will declare the operating band or bands, frequencies, and operating channel widthsin the certification filing. See EN 300-220-2, Annex B and C, for tables of allowable frequenciesand bands of operation. Annex B lists the frequencies for EU wide national harmonised radio andAnnex C for radio interfaces not EU wide harmonised. The Annex C (not harmonised) is for operationalfrequencies that may be allowed in some EU countries, but not all. It is up to the manufacturer todetermine which EU countries that the gateway may operate in and the requirements of that country.Additional insight on this subject is given in the Semtech TN1300.01 technical note with a link inthe References.

EN 300-220-2 4.2.2 / EN 300-220-1 5.9 Spurious Emissions

Unintended spurious emissions are measured in both transmit and receive / standby modes withdifferent limits for each operational mode. EN 300-220-1 5.9.1 defines a spectral mask whentransmitting with varying spurious limits depending on the frequency spacing from the intendedchannel. Spurious emissions are measured in both conducted and radiated modes with the exception ofdevices without antenna connectors (permanent antenna) are permitted to have radiated onlymeasurements. The ETSI specification covers a wide range of frequencies depending on the test modefrom 9 kHz to 6 GHz. The equipment under test must be measured at the lowest and highest operatingfrequencies at maximum power. Normal test conditions are only required for spurious emissionsmeasurements.

EN 300-220-2 4.3.1 / EN 300-220-1 5.2 Effective Radiated Power

Effective radiated power is measured by direct connection to the EUT when an external antenna portis available. The power may be measured by radiated means when there is no external antennaconnector available. The maximum gain of the antenna, referenced to an ideal dipole, to be used withthe equipment is included in the test report. For conducted results of effective radiated power thegain of the antenna must be added to the measured conducted power. This test is measured in transmitmode at the lowest and highest frequencies of operation and also under normal and extreme testconditions.

EN 300-220-2 4.3.2 / EN 300-220-1 5.3 Maximum e.r.p. Spectral Density

Effective radiated power spectral density is defined as the maximum power radiated when transmittingin units of power per hertz over the power envelop. Antenna gain referenced to a dipole, as in theeffective radiated power test, must be included in the calculation. It is important to note that thee.r.p. spectral density test may be the limiting factor for the power setting of the gateway.

Since gateways operate operate on several ETSI defined band “L” frequencies, specific limits mayapply depending on the EU country where it is intended for operation. In EN 300-220-2 Annex C,certain “not EU harmonised” countries may not require the EUT to meet this regulation for spectraldensity and allow 25 mW effective radiated power. For LoRaWAN / Helium operation in regions thatrequire this test the power will be limited to approximately 5 mW. The applicant should contact theregulatory agencies of each EU country for the current rules and work with a testing servicefacility to determine the proper limits.

This test is measured in transmit mode at the lowest and highest frequencies of operation undernormal test conditions only.

EN 300-220-2 4.3.3 / EN 300-220-1 5.4 Transmit Duty Cycle

The intent of the maximum transmitter duty cycle test is to not exceed the duty cycle limits givenin ETSI 300-220-2 Annex B and C. The EUT should be in “normal use” mode and the duty cycleobservational period is 1 hour of normal operation.

EN 300-220-2 4.3.4 / EN 300-220-1 5.6 Transmit Occupied Bandwidth

Transmit occupied bandwidth is defined as the frequency range in which 99% of the total power of anemission falls. This parameter is tested at the lowest and highest frequencies of operation andunder normal and extreme test conditions.

EN 300-220-2 4.3.5 / EN 300-220-1 5.8 Transmit Out of Band Emissions

Two out of band emissions requirements are defined in ETSI specifications: The operating channel andoperational frequency band. The operating channel mask defines the emissions near the channel ofoperation while the frequency band emissions include everything out to the operating band limits.These spectrum masks may overlap. ETSI 300-220-1 5.8.1 defines the masks for both specifications.Out of band emissions are tested at the lowest and highest frequencies of operation and also undernormal and extreme test conditions.

EN 300-220-2 4.3.6 / EN 300-220-1 5.10 Transmit Transient Power

Transmit transient power is defined as the transmit power falling outside the current operatingchannel when the transmitter is switched on and off. Transient power is measured at the lowest andhighest frequencies of operation at normal operating conditions only.

EN 300-220-2 4.4.2 / EN 300-220-1 5.18 Receiver Blocking

Receiver blocking is defined as the capability of the receiver to receive a wanted modulated signalwithout exceeding a given degradation due to the presence of a stronger unwanted input signal otherthan a spurious response or an adjacent channel. The test is performed with 2 signal generators, oneon-channel with the wanted modulated signal and an offset generator with an unmodulated carrier. EN300-220-2 specifies the minimum performance standard is a category 2, and EN300-220-2 5.18.3 definesthe levels for category 2. Blocking is measured at normal test conditions only but ETSI requires atleast 1 measurement per band that the EUT operates in.

Conducted and Radiated Tests, Antenna Requirements

The effective radiated output power, EN 300-220-1 5.2, as discussed above takes into account antennagain. The maximum antenna gain, with respect to a dipole reference, must be added to output power todetermine the effective radiated output power. Gateways with antennas that have gain over a standarddipole will need to reduce their maximum conducted power settings to meet this specification.

ETSI certification testing is mostly written around conducted methods where a cable is attached tothe antenna port or a test port. The specifications do allow for radiated testing of most parameterswhich may be the case for EUTs that do not have readily available test connections. See EN 300-220-1sections 4.3.7, 4.3.8, and 4.3.9 for requirements. Spurious emissions is a notable exception toconducted only test procedures where a radiated measurement must be taken.

While radiated testing for most parameters is allowed, it is usually not practical to attemptextreme test conditions with this test method especially over temperature extremes. Most gatewaydesigns are stationary devices and are assumed to have access to an antenna connector or an internaltest connector.

Summary of Certification Testing Requirements

EN 300-220-2EN 300-220-1TestsLimitsResults
4.2.15.1.1Operating FrequencyDeclared
4.2.25.9Spurious EmissionsSee -1 5.9
4.3.15.2Effective Radiated PowerSee -2 Annex B, C
4.3.25.3e.r.p. Spectral DensityDepends on EU country
4.3.35.4TX Duty CycleSee -2 Annex B, C
4.3.45.6TX Occupied BandwidthSee -2 Annex B, C
4.3.55.8TX Out of Band EmissionsSee -1 5.8.2 Table 15
4.3.65.10TX Transient PowerSee -1 5.10.2 Table 23
4.4.25.18Receiver BlockingSee -1 5.18.3 category 2 min

Helium Foundation Expected Minimum Performance

While all Helium gateways for operation in the EU must meet CD RED standards as presented in thesections above, additional performance parameters not regulated by ETSI standards are expected toensure the intended operation of the Helium network. Maximum output power for the operational modesis regulated by ETSI regulations, however, ETSI does not specify minimum power output. Likewise, theEU does not regulate receiver minimum sensitivity levels for duty cycle limited devices.

For the proper operation of the Helium network, minimum power outputs and receiver sensitivity areexpected for Helium’s hotspot approval process (see HIP19). The minimum performance levels are basedon Semtech Corecell reference design using the SX1302 baseband processor and SX1250 RF transceiver.The Semtech performance report (link in the references) shows typical power outputs in section 4 andreceiver performance for various spreading factors in section 8. Helium expects power output to bewithin 1 dB of the Corcell reference design and receiver sensitivities to be no worse than 2 dBabove the reference design levels.

CE RED Testing and Certification of Helium Compatible Gateways | Helium Documentation (2024)

FAQs

What is the frequency of helium network? ›

Introduction​

Currently the Helium system operates on 200 kHz channel frequencies from 868.1 to 868.8 MHz in the EU868 band.

What are devices that can connect to helium? ›

Smart pet collars, environmental sensors, bike trackers, or any compatible IoT device can connect to Helium Hotspots without Wi-Fi or cellular networks, inspiring innovation and enabling new use cases.

What network does Helium use? ›

Energy efficiency: Helium uses a low-power, long-range wireless protocol called LoRaWAN, which allows for extended battery life for connected devices.

How much is Helium Network worth today? ›

The current market cap of Helium is $1.33B. A high market cap implies that the asset is highly valued by the market.

What phones are compatible with helium? ›

Helium Mobile eSIMs and pSIMs are compatible with most devices that support iOS 14 and newer and Android 11 and newer. *Note that devices must be unlocked. Contact your previous provider for details on unlocking your device.

What is the helium protocol? ›

Helium is a blockchain-based network that connects IoT devices. Helium technology enables communication between the devices, while the system sends data across the network nodes. The nodes that compose the network are known as Hotspots in the Helium system.

What platform supports helium? ›

Coinbase is the most trusted place for people and businesses to buy, sell, and manage Helium.

What is the frequency of Helium? ›

Expert-Verified Answer

The frequency of a helium-neon laser light with a wavelength of 632.8 nm is 4.74 x 10^14 s^-1.

What frequency is Helium miner antenna? ›

The LongAP Light hotspot is an indoor Helium miner that operates in the 868 or 915 MHz frequency bands.

What is the frequency of Helium emission spectrum? ›

Helium
Wavelength (nm)ColorFrequency (Hz)
501blue-green5.99 x 1014
505blue-green5.94 x 1014
587yellow5.11 x 1014
669red4.48 x 1014
4 more rows

What is the frequency of Helium laser? ›

What is the frequency of the light waves? A helium-neon laser has a power output of 1 m W of light of wavelength 632.8 n m .

Top Articles
Here's How to Politely Ask for a Discount
How do you avoid common pitfalls and mistakes when requesting an interest rate reduction letter?
Will Byers X Male Reader
Average Jonas Wife
Victory Road Radical Red
Weeminuche Smoke Signal
Craglist Oc
Phenix Food Locker Weekly Ad
King Fields Mortuary
Call of Duty: NEXT Event Intel, How to Watch, and Tune In Rewards
Jesus Revolution Showtimes Near Chisholm Trail 8
Rls Elizabeth Nj
Clairememory Scam
The Binding of Isaac
Slushy Beer Strain
Oc Craiglsit
Craigslist Deming
Craigslist Malone New York
Mflwer
Walmart stores in 6 states no longer provide single-use bags at checkout: Which states are next?
Aspen Mobile Login Help
Walgreens San Pedro And Hildebrand
Catherine Christiane Cruz
Uncovering The Mystery Behind Crazyjamjam Fanfix Leaked
A Man Called Otto Showtimes Near Cinemark University Mall
Surplus property Definition: 397 Samples | Law Insider
EVO Entertainment | Cinema. Bowling. Games.
Astro Seek Asteroid Chart
United E Gift Card
Craigslist Cars And Trucks Mcallen
Vitals, jeden Tag besser | Vitals Nahrungsergänzungsmittel
Shoreone Insurance A.m. Best Rating
Radical Red Doc
Craigslist Pets Huntsville Alabama
Craiglist Hollywood
Stanley Steemer Johnson City Tn
Google Flights Orlando
Sept Month Weather
Sig Mlok Bayonet Mount
Dr Mayy Deadrick Paradise Valley
Darkglass Electronics The Exponent 500 Test
Theater X Orange Heights Florida
American Bully Puppies for Sale | Lancaster Puppies
Meee Ruh
Every Type of Sentinel in the Marvel Universe
Dolce Luna Italian Restaurant & Pizzeria
Renfield Showtimes Near Regal The Loop & Rpx
Ocean County Mugshots
Acellus Grading Scale
Noaa Duluth Mn
Guidance | GreenStar™ 3 2630 Display
Latest Posts
Article information

Author: Aracelis Kilback

Last Updated:

Views: 5939

Rating: 4.3 / 5 (64 voted)

Reviews: 95% of readers found this page helpful

Author information

Name: Aracelis Kilback

Birthday: 1994-11-22

Address: Apt. 895 30151 Green Plain, Lake Mariela, RI 98141

Phone: +5992291857476

Job: Legal Officer

Hobby: LARPing, role-playing games, Slacklining, Reading, Inline skating, Brazilian jiu-jitsu, Dance

Introduction: My name is Aracelis Kilback, I am a nice, gentle, agreeable, joyous, attractive, combative, gifted person who loves writing and wants to share my knowledge and understanding with you.