Gamma Distribution | Gamma Function | Properties (2024)

previous

next


4.2.4 Gamma Distribution

The gamma distribution is another widely used distribution. Its importance is largely due toits relation to exponential and normal distributions. Here, we will provide an introduction to thegamma distribution. In Chapters 6 and 11, we will discuss more properties of the gammarandom variables. Before introducing the gamma random variable, we need to introduce thegamma function.

Gamma function: The gamma function [10], shown by $ \Gamma(x)$, is an extension of the factorialfunction to real (and complex) numbers. Specifically, if $n \in \{1,2,3,...\} $, then$$ \Gamma(n) = (n-1)!$$More generally, for any positive real number $\alpha$, $\Gamma(\alpha)$ is defined as$$ \Gamma(\alpha) = \int_0^\infty x^{\alpha - 1} e^{-x} {\rm d}x, \hspace{20pt} \textrm{for }\alpha>0. $$
Figure 4.9 shows the gamma function for positive real values.

Gamma Distribution | Gamma Function | Properties (1)Figure 4.9: The Gamma function for some real values of $\alpha$.


Note that for $\alpha=1$, we can write$$\begin{align*}\Gamma(1) &= \int_0^\infty e^{-x} dx\\ &= 1.\end{align*}$$Using the change of variable $x = \lambda y$, we can show the following equation that is often useful when working withthe gamma distribution:$$ \Gamma(\alpha) = \lambda^{\alpha} \int_0^\infty y^{\alpha-1} e^{-\lambda y} dy \hspace{20pt} \textrm{for } \alpha,\lambda > 0.$$Also, using integration by parts it can be shown that$$ \Gamma(\alpha + 1) = \alpha\Gamma(\alpha), \hspace{20pt} \textrm{for } \alpha > 0.$$Note that if $\alpha = n$, where $n$ is a positive integer, the above equation reduces to$$ n! = n \cdot (n-1)!$$

Properties of the gamma function

For any positive real number $\alpha$:

  1. $\Gamma(\alpha) = \int_0^\infty x^{\alpha - 1} e^{-x} dx$;
  2. $\int_0^\infty x^{\alpha - 1} e^{-\lambda x} dx = \frac{\Gamma(\alpha)}{\lambda^{\alpha}},\hspace{20pt} \textrm{for } \lambda > 0;$
  3. $\Gamma(\alpha + 1) = \alpha \Gamma(\alpha);$
  4. $\Gamma(n) = (n - 1)!, \textrm{ for } n = 1,2,3,\cdots ;$
  5. $\Gamma(\frac{1}{2}) = \sqrt{\pi}$.

Example
Answer the following questions:

  1. Find $\Gamma(\frac{7}{2}).$
  2. Find the value of the following integral:$$ I = \int_0^\infty x^{6} e^{-5x} dx.$$
  • Solution
      1. To find $\Gamma(\frac{7}{2}),$ we can write$$\begin{align}\Gamma(\frac{7}{2}) &= \frac{5}{2} \cdot \Gamma(\frac{5}{2}) \hspace{20pt} \textrm{(using Property 3)}\\ &= \frac{5}{2} \cdot \frac{3}{2} \cdot \Gamma(\frac{3}{2}) \hspace{20pt} \textrm{(using Property 3)}\\ &= \frac{5}{2} \cdot \frac{3}{2} \cdot \frac{1}{2} \cdot \Gamma(\frac{1}{2}) \textrm{(using Property 3)}\\ &= \frac{5}{2} \cdot \frac{3}{2} \cdot \frac{1}{2} \cdot \sqrt{\pi} \hspace{20pt} \textrm{(using Property 5)}\\ &= \frac{15}{8} \sqrt{\pi}.\end{align}$$
      2. Using Property 2 with $\alpha = 7$ and $\lambda = 5$, we obtain$$\begin{align*}I &= \int_0^\infty x^{6} e^{-5x} dx\\ &= \frac{\Gamma(7)}{5^7}\\ &= \frac{6!}{5^7} \hspace{20pt} \textrm{(using Property 4)}\\ &\approx 0.0092\end{align*}$$

    Gamma Distribution:
    We now define the gamma distribution by providing its PDF:

    A continuous random variable $X$ is said to have a gamma distribution with parameters$\alpha > 0 \textrm{ and } \lambda > 0 $, shown as $X \sim Gamma(\alpha,\lambda)$, if its PDFis given by$$f_X(x) = \left\{\begin{array}{l l}\frac{\lambda^{\alpha} x^{\alpha-1} e^{-\lambda x}}{\Gamma(\alpha)} \hspace {5pt} x > 0\\0 \hspace{56pt} \textrm{otherwise}\end{array}\right.$$

    If we let $\alpha = 1$, we obtain$$f_X(x) = \left\{\begin{array}{l l}\lambda e^{-\lambda x} \hspace{20pt} x > 0\\0 \hspace{41pt} \textrm{otherwise}\end{array}\right.$$Thus, we conclude $Gamma(1,\lambda) = Exponential(\lambda)$. More generally, if you sum $n$independent $Exponential(\lambda)$ random variables, then you will get a $Gamma(n,\lambda)$random variable. We will prove this later on using the moment generating function. The gammadistribution is also related to the normal distribution as will be discussed later. Figure 4.10shows the PDF of the gamma distribution for several values of $\alpha$.

    Gamma Distribution | Gamma Function | Properties (2)Figure 4.10: PDF of the gamma distribution for some values of $\alpha$ and $\lambda$.



    Example
    Using the properties of the gamma function, show that the gamma PDF integrates to 1, i.e., showthat for $\alpha , \lambda > 0$, we have$$\int_0^\infty \frac{\lambda^{\alpha}x^{\alpha - 1} e^{-\lambda x}}{\Gamma(\alpha)} dx = 1.$$

    • Solution
      • We can write$$\begin{align*}\int_0^\infty \frac{\lambda^{\alpha} x^{\alpha - 1} e^{-\lambda x}}{\Gamma(\alpha)} dx &=\frac{\lambda^{\alpha}}{\Gamma(\alpha)} \int_0^\infty x^{\alpha - 1} e^{-\lambda x} dx\\\\ \hspace{20pt} &= \frac{\lambda^{\alpha}}{\Gamma(\alpha)} \cdot \frac{\Gamma(\alpha)}{\lambda^{\alpha}}\hspace{20pt} \textrm{(using Property 2 of the gamma function)}\\\\ \hspace{0px} &= 1.\end{align*}$$

    In the Solved Problems section, we calculate the mean and variance for the gamma distribution. In particular,we find out that if $X \sim Gamma(\alpha,\lambda)$, then$$ EX = \frac{\alpha}{\lambda}, \hspace{20pt} Var(X) = \frac{\alpha}{\lambda^2}.$$

    previous

    next


    The print version of the book is available on Amazon.

    Gamma Distribution | Gamma Function | Properties (3)


    Practical uncertainty: Useful Ideas in Decision-Making, Risk, Randomness, & AI

    Gamma Distribution | Gamma Function | Properties (4)

    Gamma Distribution | Gamma Function | Properties (2024)
    Top Articles
    Which is the Easiest Nordic Language to Learn? | OptiLingo
    What Is Private Mortgage Insurance (PMI)?
    Katie Pavlich Bikini Photos
    Gamevault Agent
    Pieology Nutrition Calculator Mobile
    Hocus Pocus Showtimes Near Harkins Theatres Yuma Palms 14
    Hendersonville (Tennessee) – Travel guide at Wikivoyage
    Doby's Funeral Home Obituaries
    Compare the Samsung Galaxy S24 - 256GB - Cobalt Violet vs Apple iPhone 16 Pro - 128GB - Desert Titanium | AT&T
    Vardis Olive Garden (Georgioupolis, Kreta) ✈️ inkl. Flug buchen
    Things To Do In Atlanta Tomorrow Night
    Non Sequitur
    Crossword Nexus Solver
    How To Cut Eelgrass Grounded
    Pac Man Deviantart
    Alexander Funeral Home Gallatin Obituaries
    Craigslist In Flagstaff
    Shasta County Most Wanted 2022
    Energy Healing Conference Utah
    Testberichte zu E-Bikes & Fahrrädern von PROPHETE.
    Aaa Saugus Ma Appointment
    Geometry Review Quiz 5 Answer Key
    Icivics The Electoral Process Answer Key
    Allybearloves
    Bible Gateway passage: Revelation 3 - New Living Translation
    Yisd Home Access Center
    Home
    Shadbase Get Out Of Jail
    Gina Wilson Angle Addition Postulate
    Celina Powell Lil Meech Video: A Controversial Encounter Shakes Social Media - Video Reddit Trend
    Walmart Pharmacy Near Me Open
    Marquette Gas Prices
    A Christmas Horse - Alison Senxation
    Ou Football Brainiacs
    Access a Shared Resource | Computing for Arts + Sciences
    Vera Bradley Factory Outlet Sunbury Products
    Pixel Combat Unblocked
    Cvs Sport Physicals
    Mercedes W204 Belt Diagram
    'Conan Exiles' 3.0 Guide: How To Unlock Spells And Sorcery
    Teenbeautyfitness
    Where Can I Cash A Huntington National Bank Check
    Facebook Marketplace Marrero La
    Nobodyhome.tv Reddit
    Topos De Bolos Engraçados
    Sand Castle Parents Guide
    Gregory (Five Nights at Freddy's)
    Grand Valley State University Library Hours
    Holzer Athena Portal
    Hello – Cornerstone Chapel
    Stoughton Commuter Rail Schedule
    Selly Medaline
    Latest Posts
    Article information

    Author: Van Hayes

    Last Updated:

    Views: 6082

    Rating: 4.6 / 5 (46 voted)

    Reviews: 93% of readers found this page helpful

    Author information

    Name: Van Hayes

    Birthday: 1994-06-07

    Address: 2004 Kling Rapid, New Destiny, MT 64658-2367

    Phone: +512425013758

    Job: National Farming Director

    Hobby: Reading, Polo, Genealogy, amateur radio, Scouting, Stand-up comedy, Cryptography

    Introduction: My name is Van Hayes, I am a thankful, friendly, smiling, calm, powerful, fine, enthusiastic person who loves writing and wants to share my knowledge and understanding with you.