How the Other Half Lives: What p53 Does When It Is Not Being a Transcription Factor (2024)

1. Sullivan K.D., Galbraith M.D., Andrysik Z., Espinosa J.M. Mechanisms of transcriptional regulation by p53. Cell Death Differ. 2018;25:133–143. doi:10.1038/cdd.2017.174. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

2. Paris R., Henry R.E., Stephens S.J., McBryde M., Espinosa J.M. Multiple p53-independent gene silencing mechanisms define the cellular response to p53 activation. Cell Cycle. 2008;7:2427–2433. doi:10.4161/cc.6420. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

3. Ferguson A.T., Evron E., Umbricht C.B., Pandita T.K., Chan T.A., Hermeking H., Marks J.R., Lambers A.R., Futreal P.A., Stampfer M.R., et al. High frequency of hypermethylation at the 14-3-3 sigma locus leads to gene silencing in breast cancer. Proc. Natl. Acad. Sci. USA. 2000;97:6049–6054. doi:10.1073/pnas.100566997. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

4. Melo C.A., Drost J., Wijchers P.J., van de Werken H., de Wit E., Oude Vrielink J.A., Elkon R., Melo S.A., Leveille N., Kalluri R., et al. eRNAs are required for p53-dependent enhancer activity and gene transcription. Mol. Cell. 2013;49:524–535. doi:10.1016/j.molcel.2012.11.021. [PubMed] [CrossRef] [Google Scholar]

5. Morachis J.M., Murawsky C.M., Emerson B.M. Regulation of the p53 transcriptional response by structurally diverse core promoters. Genes Dev. 2010;24:135–147. doi:10.1101/gad.1856710. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

6. Deng C., Zhang P., Harper J.W., Elledge S.J., Leder P. Mice lacking p21CIP1/WAF1 undergo normal development, but are defective in G1 checkpoint control. Cell. 1995;82:675–684. doi:10.1016/0092-8674(95)90039-X. [PubMed] [CrossRef] [Google Scholar]

7. Choudhury A.R., Ju Z., Djojosubroto M.W., Schienke A., Lechel A., Schaetzlein S., Jiang H., Stepczynska A., Wang C., Buer J., et al. Cdkn1a deletion improves stem cell function and lifespan of mice with dysfunctional telomeres without accelerating cancer formation. Nat. Genet. 2007;39:99–105. doi:10.1038/ng1937. [PubMed] [CrossRef] [Google Scholar]

8. Michalak E.M., Villunger A., Adams J.M., Strasser A. In several cell types tumour suppressor p53 induces apoptosis largely via Puma but Noxa can contribute. Cell Death Differ. 2008;15:1019–1029. doi:10.1038/cdd.2008.16. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

9. Valente L.J., Gray D.H., Michalak E.M., Pinon-Hofbauer J., Egle A., Scott C.L., Janic A., Strasser A. p53 efficiently suppresses tumor development in the complete absence of its cell-cycle inhibitory and proapoptotic effectors p21, Puma, and Noxa. Cell Rep. 2013;3:1339–1345. doi:10.1016/j.celrep.2013.04.012. [PubMed] [CrossRef] [Google Scholar]

10. Wang Z.G., Delva L., Gaboli M., Rivi R., Giorgio M., Cordon-Cardo C., Grosveld F., Pandolfi P.P. Role of PML in cell growth and the retinoic acid pathway. Science. 1998;279:1547–1551. doi:10.1126/science.279.5356.1547. [PubMed] [CrossRef] [Google Scholar]

11. Hollander M.C., Sheikh M.S., Bulavin D.V., Lundgren K., Augeri-Henmueller L., Shehee R., Molinaro T.A., Kim K.E., Tolosa E., Ashwell J.D., et al. Genomic instability in Gadd45a-deficient mice. Nat. Genet. 1999;23:176–184. doi:10.1038/13802. [PubMed] [CrossRef] [Google Scholar]

12. Doumont G., Martoriati A., Beekman C., Bogaerts S., Mee P.J., Bureau F., Colombo E., Alcalay M., Bellefroid E., Marchesi F., et al. G1 checkpoint failure and increased tumor susceptibility in mice lacking the novel p53 target Ptprv. EMBO J. 2005;24:3093–3103. doi:10.1038/sj.emboj.7600769. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

13. Liu G., Parant J.M., Lang G., Chau P., Chavez-Reyes A., El-Naggar A.K., Multani A., Chang S., Lozano G. Chromosome stability, in the absence of apoptosis, is critical for suppression of tumorigenesis in Trp53 mutant mice. Nat. Genet. 2004;36:63–68. doi:10.1038/ng1282. [PubMed] [CrossRef] [Google Scholar]

14. Cosme-Blanco W., Shen M.F., Lazar A.J., Pathak S., Lozano G., Multani A.S., Chang S. Telomere dysfunction suppresses spontaneous tumorigenesis in vivo by initiating p53-dependent cellular senescence. EMBO Rep. 2007;8:497–503. doi:10.1038/sj.embor.7400937. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

15. Brady C.A., Jiang D., Mello S.S., Johnson T.M., Jarvis L.A., Kozak M.M., Kenzelmann Broz D., Basak S., Park E.J., McLaughlin M.E., et al. Distinct p53 transcriptional programs dictate acute DNA-damage responses and tumor suppression. Cell. 2011;145:571–583. doi:10.1016/j.cell.2011.03.035. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

16. Li T., Kon N., Jiang L., Tan M., Ludwig T., Zhao Y., Baer R., Gu W. Tumor suppression in the absence of p53-mediated cell-cycle arrest, apoptosis, and senescence. Cell. 2012;149:1269–1283. doi:10.1016/j.cell.2012.04.026. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

17. Janic A., Valente L.J., Wakefield M.J., Di Stefano L., Milla L., Wilcox S., Yang H., Tai L., Vandenberg C.J., Kueh A.J., et al. DNA repair processes are critical mediators of p53-dependent tumor suppression. Nat. Med. 2018;24:947–953. doi:10.1038/s41591-018-0043-5. [PubMed] [CrossRef] [Google Scholar]

18. Meek D.W., Anderson C.W. Posttranslational modification of p53: Cooperative integrators of function. Cold Spring Harb. Perspect. Biol. 2009;1:a000950. doi:10.1101/cshperspect.a000950. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

19. Carter S., Vousden K.H. Modifications of p53: Competing for the lysines. Curr. Opin. Genet. Dev. 2009;19:18–24. doi:10.1016/j.gde.2008.11.010. [PubMed] [CrossRef] [Google Scholar]

20. Romanova L.Y., Willers H., Blagosklonny M.V., Powell S.N. The interaction of p53 with replication protein A mediates suppression of hom*ologous recombination. Oncogene. 2004;23:9025–9033. doi:10.1038/sj.onc.1207982. [PubMed] [CrossRef] [Google Scholar]

21. Kern S.E., Kinzler K.W., Baker S.J., Nigro J.M., Rotter V., Levine A.J., Friedman P., Prives C., Vogelstein B. Mutant p53 proteins bind DNA abnormally in vitro. Oncogene. 1991;6:131–136. [PubMed] [Google Scholar]

22. Liu Y., Kulesz-Martin M. p53 protein at the hub of cellular DNA damage response pathways through sequence-specific and non-sequence-specific DNA binding. Carcinogenesis. 2001;22:851–860. doi:10.1093/carcin/22.6.851. [PubMed] [CrossRef] [Google Scholar]

23. Lee S., Elenbaas B., Levine A., Griffith J. p53 and its 14 kDa C-terminal domain recognize primary DNA damage in the form of insertion/deletion mismatches. Cell. 1995;81:1013–1020. doi:10.1016/S0092-8674(05)80006-6. [PubMed] [CrossRef] [Google Scholar]

24. Oberosler P., Hloch P., Ramsperger U., Stahl H. p53-catalyzed annealing of complementary single-stranded nucleic acids. EMBO J. 1993;12:2389–2396. doi:10.1002/j.1460-2075.1993.tb05893.x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

25. Bakalkin G., Yakovleva T., Selivanova G., Magnusson K.P., Szekely L., Kiseleva E., Klein G., Terenius L., Wiman K.G. p53 binds single-stranded DNA ends and catalyzes DNA renaturation and strand transfer. Proc. Natl. Acad. Sci. USA. 1994;91:413–417. doi:10.1073/pnas.91.1.413. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

26. Gottifredi V., Shieh S., Taya Y., Prives C. p53 accumulates but is functionally impaired when DNA synthesis is blocked. Proc. Natl. Acad. Sci. USA. 2001;98:1036–1041. doi:10.1073/pnas.98.3.1036. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

27. Hampp S., Kiessling T., Buechle K., Mansilla S.F., Thomale J., Rall M., Ahn J., Pospiech H., Gottifredi V., Wiesmuller L. DNA damage tolerance pathway involving DNA polymerase iota and the tumor suppressor p53 regulates DNA replication fork progression. Proc. Natl. Acad. Sci. USA. 2016;113:E4311–E4319. doi:10.1073/pnas.1605828113. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

28. Mummenbrauer T., Janus F., Muller B., Wiesmuller L., Deppert W., Grosse F. p53 Protein exhibits 3′-to-5′ exonuclease activity. Cell. 1996;85:1089–1099. doi:10.1016/S0092-8674(00)81309-4. [PubMed] [CrossRef] [Google Scholar]

29. Ahn J., Poyurovsky M.V., Baptiste N., Beckerman R., Cain C., Mattia M., McKinney K., Zhou J., Zupnick A., Gottifredi V., et al. Dissection of the sequence-specific DNA binding and exonuclease activities reveals a superactive yet apoptotically impaired mutant p53 protein. Cell Cycle. 2009;8:1603–1615. doi:10.4161/cc.8.10.8548. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

30. Yeo C.Q.X., Alexander I., Lin Z., Lim S., Aning O.A., Kumar R., Sangthongpitag K., Pendharkar V., Ho V.H.B., Cheok C.F. p53 Maintains Genomic Stability by Preventing Interference between Transcription and Replication. Cell Rep. 2016;15:132–146. doi:10.1016/j.celrep.2016.03.011. [PubMed] [CrossRef] [Google Scholar]

31. Toyoshima M., Shimura T., Adiga S.K., Taga M., Shiraishi K., Inoue M., Yuan Z.M., Niwa O. Transcription-independent suppression of DNA synthesis by p53 in sperm-irradiated mouse zygotes. Oncogene. 2005;24:3229–3235. doi:10.1038/sj.onc.1208514. [PubMed] [CrossRef] [Google Scholar]

32. Roy S., Tomaszowski K.H., Luzwick J.W., Park S., Li J., Murphy M., Schlacher K. p53 orchestrates DNA replication restart homeostasis by suppressing mutagenic RAD52 and POLtheta pathways. eLife. 2018;7:e31723. doi:10.7554/eLife.31723. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

33. Felley-Bosco E., Weston A., Cawley H.M., Bennett W.P., Harris C.C. Functional studies of a germ-line polymorphism at codon 47 within the p53 gene. Am. J. Hum. Genet. 1993;53:752–759. [PMC free article] [PubMed] [Google Scholar]

34. Jennis M., Kung C.P., Basu S., Budina-Kolomets A., Leu J.I., Khaku S., Scott J.P., Cai K.Q., Campbell M.R., Porter D.K., et al. An African-specific polymorphism in the TP53 gene impairs p53 tumor suppressor function in a mouse model. Genes Dev. 2016;30:918–930. doi:10.1101/gad.275891.115. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

35. Song H., Hollstein M., Xu Y. p53 gain-of-function cancer mutants induce genetic instability by inactivating ATM. Nat. Cell Biol. 2007;9:573–580. doi:10.1038/ncb1571. [PubMed] [CrossRef] [Google Scholar]

36. Liu K., Lin F.T., Graves J.D., Lee Y.J., Lin W.C. Mutant p53 perturbs DNA replication checkpoint control through TopBP1 and Treslin. Proc. Natl. Acad. Sci. USA. 2017;114:E3766–E3775. doi:10.1073/pnas.1619832114. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

37. Bertrand P., Saintigny Y., Lopez B.S. p53′s double life: Transactivation-independent repression of hom*ologous recombination. Trends Genet. TIG. 2004;20:235–243. doi:10.1016/j.tig.2004.04.003. [PubMed] [CrossRef] [Google Scholar]

38. Gatz S.A., Wiesmuller L. p53 in recombination and repair. Cell Death Differ. 2006;13:1003–1016. doi:10.1038/sj.cdd.4401903. [PubMed] [CrossRef] [Google Scholar]

39. Huang P. Excision of mismatched nucleotides from DNA: A potential mechanism for enhancing DNA replication fidelity by the wild-type p53 protein. Oncogene. 1998;17:261–270. doi:10.1038/sj.onc.1201946. [PubMed] [CrossRef] [Google Scholar]

40. Hwang B.J., Ford J.M., Hanawalt P.C., Chu G. Expression of the p48 xeroderma pigmentosum gene is p53-dependent and is involved in global genomic repair. Proc. Natl. Acad. Sci. USA. 1999;96:424–428. doi:10.1073/pnas.96.2.424. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

41. Hastak K., Adimoolam S., Trinklein N.D., Myers R.M., Ford J.M. Identification of a Functional In Vivo p53 Response Element in the Coding Sequence of the Xeroderma Pigmentosum Group C Gene. Genes Cancer. 2012;3:131–140. doi:10.1177/1947601912456288. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

42. Chatterjee A., Mambo E., Osada M., Upadhyay S., Sidransky D. The effect of p53-RNAi and p53 knockout on human 8-oxoguanine DNA glycosylase (hOgg1) activity. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2006;20:112–114. doi:10.1096/fj.04-3423fje. [PubMed] [CrossRef] [Google Scholar]

43. Oka S., Leon J., Tsuchimoto D., Sakumi K., Nakabeppu Y. MUTYH, an adenine DNA glycosylase, mediates p53 tumor suppression via PARP-dependent cell death. Oncogenesis. 2014;3:e121. doi:10.1038/oncsis.2014.35. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

44. Hine C.M., Li H., Xie L., Mao Z., Seluanov A., Gorbunova V. Regulation of Rad51 promoter. Cell Cycle. 2014;13:2038–2045. doi:10.4161/cc.29016. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

45. Zhou J., Ahn J., Wilson S.H., Prives C. A role for p53 in base excision repair. EMBO J. 2001;20:914–923. doi:10.1093/emboj/20.4.914. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

46. Williams A.B., Schumacher B. p53 in the DNA-Damage-Repair Process. Cold Spring Harb. Perspect. Med. 2016;6:a026070. doi:10.1101/cshperspect.a026070. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

47. Tan T., Chu G. p53 Binds and activates the xeroderma pigmentosum DDB2 gene in humans but not mice. Mol. Cell. Biol. 2002;22:3247–3254. doi:10.1128/MCB.22.10.3247-3254.2002. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

48. Linke S.P., Sengupta S., Khabie N., Jeffries B.A., Buchhop S., Miska S., Henning W., Pedeux R., Wang X.W., Hofseth L.J., et al. p53 interacts with hRAD51 and hRAD54, and directly modulates hom*ologous recombination. Cancer Res. 2003;63:2596–2605. [PubMed] [Google Scholar]

49. Boehden G.S., Restle A., Marschalek R., Stocking C., Wiesmuller L. Recombination at chromosomal sequences involved in leukaemogenic rearrangements is differentially regulated by p53. Carcinogenesis. 2004;25:1305–1313. doi:10.1093/carcin/bgh092. [PubMed] [CrossRef] [Google Scholar]

50. Boehden G.S., Akyuz N., Roemer K., Wiesmuller L. p53 mutated in the transactivation domain retains regulatory functions in hom*ology-directed double-strand break repair. Oncogene. 2003;22:4111–4117. doi:10.1038/sj.onc.1206632. [PubMed] [CrossRef] [Google Scholar]

51. Gottifredi V., Wiesmuller L. The Tip of an Iceberg: Replication-Associated Functions of the Tumor Suppressor p53. Cancers. 2018;10:250. doi:10.3390/cancers10080250. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

52. Restle A., Farber M., Baumann C., Bohringer M., Scheidtmann K.H., Muller-Tidow C., Wiesmuller L. Dissecting the role of p53 phosphorylation in hom*ologous recombination provides new clues for gain-of-function mutants. Nucleic Acids Res. 2008;36:5362–5375. doi:10.1093/nar/gkn503. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

53. Sirbu B.M., Lachmayer S.J., Wulfing V., Marten L.M., Clarkson K.E., Lee L.W., Gheorghiu L., Zou L., Powell S.N., Dahm-Daphi J., et al. ATR-p53 restricts hom*ologous recombination in response to replicative stress but does not limit DNA interstrand crosslink repair in lung cancer cells. PLoS ONE. 2011;6:e23053. doi:10.1371/journal.pone.0023053. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

54. Yang Q., Zhang R., Wang X.W., Spillare E.A., Linke S.P., Subramanian D., Griffith J.D., Li J.L., Hickson I.D., Shen J.C., et al. The processing of Holliday junctions by BLM and WRN helicases is regulated by p53. J. Biol. Chem. 2002;277:31980–31987. doi:10.1074/jbc.M204111200. [PubMed] [CrossRef] [Google Scholar]

55. Sengupta S., Linke S.P., Pedeux R., Yang Q., Farnsworth J., Garfield S.H., Valerie K., Shay J.W., Ellis N.A., Wasylyk B., et al. BLM helicase-dependent transport of p53 to sites of stalled DNA replication forks modulates hom*ologous recombination. EMBO J. 2003;22:1210–1222. doi:10.1093/emboj/cdg114. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

56. Brosh R.M., Jr., Karmakar P., Sommers J.A., Yang Q., Wang X.W., Spillare E.A., Harris C.C., Bohr V.A. p53 Modulates the exonuclease activity of Werner syndrome protein. J. Biol. Chem. 2001;276:35093–35102. doi:10.1074/jbc.M103332200. [PubMed] [CrossRef] [Google Scholar]

57. Sidorova J.M., Kehrli K., Mao F., Monnat R., Jr. Distinct functions of human RECQ helicases WRN and BLM in replication fork recovery and progression after hydroxyurea-induced stalling. DNA Repair. 2013;12:128–139. doi:10.1016/j.dnarep.2012.11.005. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

58. Kumari A., Schultz N., Helleday T. p53 protects from replication-associated DNA double-strand breaks in mammalian cells. Oncogene. 2004;23:2324–2329. doi:10.1038/sj.onc.1207379. [PubMed] [CrossRef] [Google Scholar]

59. Rieckmann T., Kriegs M., Nitsch L., Hoffer K., Rohaly G., Kocher S., Petersen C., Dikomey E., Dornreiter I., Dahm-Daphi J. p53 modulates hom*ologous recombination at I-SceI-induced double-strand breaks through cell-cycle regulation. Oncogene. 2013;32:968–975. doi:10.1038/onc.2012.123. [PubMed] [CrossRef] [Google Scholar]

60. Janz C., Wiesmuller L. Wild-type p53 inhibits replication-associated hom*ologous recombination. Oncogene. 2002;21:5929–5933. doi:10.1038/sj.onc.1205757. [PubMed] [CrossRef] [Google Scholar]

61. Lilling G., Elena N., Sidi Y., Bakhanashvili M. p53-associated 3′-->5′ exonuclease activity in nuclear and cytoplasmic compartments of cells. Oncogene. 2003;22:233–245. [PubMed] [Google Scholar]

62. Baptiste N., Prives C. p53 in the cytoplasm: A question of overkill? Cell. 2004;116:487–489. doi:10.1016/S0092-8674(04)00164-3. [PubMed] [CrossRef] [Google Scholar]

63. Stenmark-Askmalm M., Stal O., Sullivan S., Ferraud L., Sun X.F., Carstensen J., Nordenskjold B. Cellular accumulation of p53 protein: An independent prognostic factor in stage II breast cancer. Eur. J. Cancer. 1994;30A:175–180. doi:10.1016/0959-8049(94)90082-5. [PubMed] [CrossRef] [Google Scholar]

64. Bosari S., Viale G., Roncalli M., Graziani D., Borsani G., Lee A.K., Coggi G. p53 gene mutations, p53 protein accumulation and compartmentalization in colorectal adenocarcinoma. Am. J. Pathol. 1995;147:790–798. [PMC free article] [PubMed] [Google Scholar]

65. Moll U.M., Riou G., Levine A.J. Two distinct mechanisms alter p53 in breast cancer: Mutation and nuclear exclusion. Proc. Natl. Acad. Sci. USA. 1992;89:7262–7266. doi:10.1073/pnas.89.15.7262. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

66. Yoshida Y., Izumi H., Torigoe T., Ishiguchi H., Itoh H., Kang D., Kohno K. P53 physically interacts with mitochondrial transcription factor A and differentially regulates binding to damaged DNA. Cancer Res. 2003;63:3729–3734. [PubMed] [Google Scholar]

67. Falkenberg M. Mitochondrial DNA replication in mammalian cells: Overview of the pathway. Essays Biochem. 2018;62:287–296. [PMC free article] [PubMed] [Google Scholar]

68. Yang T., Namba H., Hara T., Takmura N., Nagayama Y., f*ckata S., Ishikawa N., Kuma K., Ito K., Yamash*ta S. p53 induced by ionizing radiation mediates DNA end-jointing activity, but not apoptosis of thyroid cells. Oncogene. 1997;14:1511–1519. doi:10.1038/sj.onc.1200979. [PubMed] [CrossRef] [Google Scholar]

69. Tang W., Willers H., Powell S.N. p53 directly enhances rejoining of DNA double-strand breaks with cohesive ends in gamma-irradiated mouse fibroblasts. Cancer Res. 1999;59:2562–2565. [PubMed] [Google Scholar]

70. Akyuz N., Boehden G.S., Susse S., Rimek A., Preuss U., Scheidtmann K.H., Wiesmuller L. DNA substrate dependence of p53-mediated regulation of double-strand break repair. Mol. Cell. Biol. 2002;22:6306–6317. doi:10.1128/MCB.22.17.6306-6317.2002. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

71. Derbyshire D.J., Basu B.P., Serpell L.C., Joo W.S., Date T., Iwabuchi K., Doherty A.J. Crystal structure of human 53BP1 BRCT domains bound to p53 tumour suppressor. EMBO J. 2002;21:3863–3872. doi:10.1093/emboj/cdf383. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

72. Moureau S., Luessing J., Harte E.C., Voisin M., Lowndes N.F. A role for the p53 tumour suppressor in regulating the balance between hom*ologous recombination and non-hom*ologous end joining. Open Biol. 2016;6:160225. doi:10.1098/rsob.160225. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

73. Mao Z., Bozzella M., Seluanov A., Gorbunova V. DNA repair by nonhom*ologous end joining and hom*ologous recombination during cell cycle in human cells. Cell Cycle. 2008;7:2902–2906. doi:10.4161/cc.7.18.6679. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

74. Rubbi C.P., Milner J. p53 is a chromatin accessibility factor for nucleotide excision repair of DNA damage. EMBO J. 2003;22:975–986. doi:10.1093/emboj/cdg082. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

75. Wang X.W., Yeh H., Schaeffer L., Roy R., Moncollin V., Egly J.M., Wang Z., Freidberg E.C., Evans M.K., Taffe B.G., et al. p53 modulation of TFIIH-associated nucleotide excision repair activity. Nat. Genet. 1995;10:188–195. doi:10.1038/ng0695-188. [PubMed] [CrossRef] [Google Scholar]

76. Leveillard T., Andera L., Bissonnette N., Schaeffer L., Bracco L., Egly J.M., Wasylyk B. Functional interactions between p53 and the TFIIH complex are affected by tumour-associated mutations. EMBO J. 1996;15:1615–1624. doi:10.1002/j.1460-2075.1996.tb00506.x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

77. Offer H., Milyavsky M., Erez N., Matas D., Zurer I., Harris C.C., Rotter V. Structural and functional involvement of p53 in BER in vitro and in vivo. Oncogene. 2001;20:581–589. doi:10.1038/sj.onc.1204120. [PubMed] [CrossRef] [Google Scholar]

78. Zhou J., Prives C. Replication of damaged DNA in vitro is blocked by p53. Nucleic Acids Res. 2003;31:3881–3892. doi:10.1093/nar/gkg468. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

79. Scherer S.J., Maier S.M., Seifert M., Hanselmann R.G., Zang K.D., Muller-Hermelink H.K., Angel P., Welter C., Schartl M. p53 and c-Jun functionally synergize in the regulation of the DNA repair gene hMSH2 in response to UV. J. Biol. Chem. 2000;275:37469–37473. doi:10.1074/jbc.M006990200. [PubMed] [CrossRef] [Google Scholar]

80. Subramanian D., Griffith J.D. Interactions between p53, hMSH2-hMSH6 and HMG I(Y) on Holliday junctions and bulged bases. Nucleic Acids Res. 2002;30:2427–2434. doi:10.1093/nar/30.11.2427. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

81. Lin X., Ramamurthi K., Mishima M., Kondo A., Christen R.D., Howell S.B. P53 modulates the effect of loss of DNA mismatch repair on the sensitivity of human colon cancer cells to the cytotoxic and mutagenic effects of cisplatin. Cancer Res. 2001;61:1508–1516. [PubMed] [Google Scholar]

82. Zink D., Mayr C., Janz C., Wiesmuller L. Association of p53 and MSH2 with recombinative repair complexes during S phase. Oncogene. 2002;21:4788–4800. doi:10.1038/sj.onc.1205614. [PubMed] [CrossRef] [Google Scholar]

83. Subramanian D., Griffith J.D. Modulation of p53 binding to Holliday junctions and 3-cytosine bulges by phosphorylation events. Biochemistry. 2005;44:2536–2544. doi:10.1021/bi048700u. [PubMed] [CrossRef] [Google Scholar]

84. Hinkal G., Parikh N., Donehower L.A. Timed somatic deletion of p53 in mice reveals age-associated differences in tumor progression. PLoS ONE. 2009;4:e6654. doi:10.1371/journal.pone.0006654. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

85. Efeyan A., Garcia-Cao I., Herranz D., Velasco-Miguel S., Serrano M. Tumour biology: Policing of oncogene activity by p53. Nature. 2006;443:159. doi:10.1038/443159a. [PubMed] [CrossRef] [Google Scholar]

86. Christophorou M.A., Ringshausen I., Finch A.J., Swigart L.B., Evan G.I. The pathological response to DNA damage does not contribute to p53-mediated tumour suppression. Nature. 2006;443:214–217. doi:10.1038/nature05077. [PubMed] [CrossRef] [Google Scholar]

87. Oda E., Ohki R., Murasawa H., Nemoto J., Shibue T., Yamash*ta T., Tokino T., Taniguchi T., Tanaka N. Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis. Science. 2000;288:1053–1058. doi:10.1126/science.288.5468.1053. [PubMed] [CrossRef] [Google Scholar]

88. Nakano K., Vousden K.H. PUMA, a novel proapoptotic gene, is induced by p53. Mol. Cell. 2001;7:683–694. doi:10.1016/S1097-2765(01)00214-3. [PubMed] [CrossRef] [Google Scholar]

89. Yu J., Zhang L., Hwang P.M., Kinzler K.W., Vogelstein B. PUMA induces the rapid apoptosis of colorectal cancer cells. Mol. Cell. 2001;7:673–682. doi:10.1016/S1097-2765(01)00213-1. [PubMed] [CrossRef] [Google Scholar]

90. Happo L., Cragg M.S., Phipson B., Haga J.M., Jansen E.S., Herold M.J., Dewson G., Michalak E.M., Vandenberg C.J., Smyth G.K., et al. Maximal killing of lymphoma cells by DNA damage-inducing therapy requires not only the p53 targets Puma and Noxa, but also Bim. Blood. 2010;116:5256–5267. doi:10.1182/blood-2010-04-280818. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

91. Lieschke E., Wang Z., Kelly G.L., Strasser A. Discussion of some ‘knowns’ and some ‘unknowns’ about the tumour suppressor p53. J. Mol. Cell Biol. 2019;11:212–223. doi:10.1093/jmcb/mjy077. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

92. Budhram-Mahadeo V., Morris P.J., Smith M.D., Midgley C.A., Boxer L.M., Latchman D.S. p53 suppresses the activation of the Bcl-2 promoter by the Brn-3a POU family transcription factor. J. Biol. Chem. 1999;274:15237–15244. doi:10.1074/jbc.274.21.15237. [PubMed] [CrossRef] [Google Scholar]

93. Bommer G.T., Gerin I., Feng Y., Kaczorowski A.J., Kuick R., Love R.E., Zhai Y., Giordano T.J., Qin Z.S., Moore B.B., et al. p53-mediated activation of miRNA34 candidate tumor-suppressor genes. Curr. Biol. CB. 2007;17:1298–1307. doi:10.1016/j.cub.2007.06.068. [PubMed] [CrossRef] [Google Scholar]

94. Tagscherer K.E., Fassl A., Sinkovic T., Combs S.E., Roth W. p53-dependent regulation of Mcl-1 contributes to synergistic cell death by ionizing radiation and the Bcl-2/Bcl-XL inhibitor ABT-737. Apoptosis Int. J. Program. Cell Death. 2012;17:187–199. doi:10.1007/s10495-011-0664-3. [PubMed] [CrossRef] [Google Scholar]

95. Liu J., Chen G., Feng L., Zhang W., Pelicano H., Wang F., Ogasawara M.A., Lu W., Amin H.M., Croce C.M., et al. Loss of p53 and altered miR15-a/16-1short right arrowMCL-1 pathway in CLL: Insights from TCL1-Tg:p53(-/-) mouse model and primary human leukemia cells. Leukemia. 2014;28:118–128. doi:10.1038/leu.2013.125. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

96. Thornborrow E.C., Patel S., Mastropietro A.E., Schwartzfarb E.M., Manfredi J.J. A conserved intronic response element mediates direct p53-dependent transcriptional activation of both the human and murine bax genes. Oncogene. 2002;21:990–999. doi:10.1038/sj.onc.1205069. [PubMed] [CrossRef] [Google Scholar]

97. Miyash*ta T., Reed J.C. Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell. 1995;80:293–299. [PubMed] [Google Scholar]

98. Fortin A., Cregan S.P., MacLaurin J.G., Kushwaha N., Hickman E.S., Thompson C.S., Hakim A., Albert P.R., Cecconi F., Helin K., et al. APAF1 is a key transcriptional target for p53 in the regulation of neuronal cell death. J. Cell Biol. 2001;155:207–216. doi:10.1083/jcb.200105137. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

99. Moroni M.C., Hickman E.S., Lazzerini Denchi E., Caprara G., Colli E., Cecconi F., Muller H., Helin K. Apaf-1 is a transcriptional target for E2F and p53. Nat. Cell Biol. 2001;3:552–558. doi:10.1038/35078527. [PubMed] [CrossRef] [Google Scholar]

100. Aubrey B.J., Kelly G.L., Janic A., Herold M.J., Strasser A. How does p53 induce apoptosis and how does this relate to p53-mediated tumour suppression? Cell Death Differ. 2018;25:104–113. doi:10.1038/cdd.2017.169. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

101. Marchenko N.D., Zaika A., Moll U.M. Death signal-induced localization of p53 protein to mitochondria. A potential role in apoptotic signaling. J. Biol. Chem. 2000;275:16202–16212. doi:10.1074/jbc.275.21.16202. [PubMed] [CrossRef] [Google Scholar]

102. Sorrentino G., Mioni M., Giorgi C., Ruggeri N., Pinton P., Moll U., Mantovani F., Del Sal G. The prolyl-isomerase Pin1 activates the mitochondrial death program of p53. Cell Death Differ. 2013;20:198–208. doi:10.1038/cdd.2012.112. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

103. Follis A.V., Llambi F., Merritt P., Chipuk J.E., Green D.R., Kriwacki R.W. Pin1-Induced Proline Isomerization in Cytosolic p53 Mediates BAX Activation and Apoptosis. Mol. Cell. 2015;59:677–684. doi:10.1016/j.molcel.2015.06.029. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

104. Leu J.I., Dumont P., Hafey M., Murphy M.E., George D.L. Mitochondrial p53 activates Bak and causes disruption of a Bak-Mcl1 complex. Nat. Cell Biol. 2004;6:443–450. doi:10.1038/ncb1123. [PubMed] [CrossRef] [Google Scholar]

105. Mihara M., Erster S., Zaika A., Petrenko O., Chittenden T., Pancoska P., Moll U.M. p53 has a direct apoptogenic role at the mitochondria. Mol. Cell. 2003;11:577–590. doi:10.1016/S1097-2765(03)00050-9. [PubMed] [CrossRef] [Google Scholar]

106. Chipuk J.E., Kuwana T., Bouchier-Hayes L., Droin N.M., Newmeyer D.D., Schuler M., Green D.R. Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis. Science. 2004;303:1010–1014. doi:10.1126/science.1092734. [PubMed] [CrossRef] [Google Scholar]

107. Pietsch E.C., Perchiniak E., Canutescu A.A., Wang G., Dunbrack R.L., Murphy M.E. Oligomerization of BAK by p53 utilizes conserved residues of the p53 DNA binding domain. J. Biol. Chem. 2008;283:21294–21304. doi:10.1074/jbc.M710539200. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

108. Vaseva A.V., Marchenko N.D., Ji K., Tsirka S.E., Holzmann S., Moll U.M. p53 opens the mitochondrial permeability transition pore to trigger necrosis. Cell. 2012;149:1536–1548. doi:10.1016/j.cell.2012.05.014. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

109. Castrogiovanni C., Waterschoot B., De Backer O., Dumont P. Serine 392 phosphorylation modulates p53 mitochondrial translocation and transcription-independent apoptosis. Cell Death Differ. 2018;25:190–203. doi:10.1038/cdd.2017.143. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

110. Timofeev O., Klimovich B., Schneikert J., Wanzel M., Pavlakis E., Noll J., Mutlu S., Elmshauser S., Nist A., Mernberger M., et al. Residual apoptotic activity of a tumorigenic p53 mutant improves cancer therapy responses. EMBO J. 2019;38:e102096. doi:10.15252/embj.2019102096. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

111. Tarapore P., f*ckasawa K. Loss of p53 and centrosome hyperamplification. Oncogene. 2002;21:6234–6240. doi:10.1038/sj.onc.1205707. [PubMed] [CrossRef] [Google Scholar]

112. Lopes C.A.M., Mesquita M., Cunha A.I., Cardoso J., Carapeta S., Laranjeira C., Pinto A.E., Pereira-Leal J.B., Dias-Pereira A., Bettencourt-Dias M., et al. Centrosome amplification arises before neoplasia and increases upon p53 loss in tumorigenesis. J. Cell Biol. 2018;217:2353–2363. doi:10.1083/jcb.201711191. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

113. Tarapore P., Horn H.F., Tokuyama Y., f*ckasawa K. Direct regulation of the centrosome duplication cycle by the p53-p21Waf1/Cip1 pathway. Oncogene. 2001;20:3173–3184. doi:10.1038/sj.onc.1204424. [PubMed] [CrossRef] [Google Scholar]

114. Oikawa T., Okuda M., Ma Z., Goorha R., Tsujimoto H., Inokuma H., f*ckasawa K. Transcriptional control of BubR1 by p53 and suppression of centrosome amplification by BubR1. Mol. Cell. Biol. 2005;25:4046–4061. doi:10.1128/MCB.25.10.4046-4061.2005. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

115. Ciciarello M., Mangiacasale R., Casenghi M., Zaira Limongi M., D’Angelo M., Soddu S., Lavia P., Cundari E. p53 displacement from centrosomes and p53-mediated G1 arrest following transient inhibition of the mitotic spindle. J. Biol. Chem. 2001;276:19205–19213. doi:10.1074/jbc.M009528200. [PubMed] [CrossRef] [Google Scholar]

116. Tarapore P., Tokuyama Y., Horn H.F., f*ckasawa K. Difference in the centrosome duplication regulatory activity among p53 ‘hot spot’ mutants: Potential role of Ser 315 phosphorylation-dependent centrosome binding of p53. Oncogene. 2001;20:6851–6863. doi:10.1038/sj.onc.1204848. [PubMed] [CrossRef] [Google Scholar]

117. Tritarelli A., Oricchio E., Ciciarello M., Mangiacasale R., Palena A., Lavia P., Soddu S., Cundari E. p53 localization at centrosomes during mitosis and postmitotic checkpoint are ATM-dependent and require serine 15 phosphorylation. Mol. Biol. Cell. 2004;15:3751–3757. doi:10.1091/mbc.e03-12-0900. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

118. Ohshima S. Centrosome aberrations associated with cellular senescence and p53 localization at supernumerary centrosomes. Oxid. Med. Cell. Longev. 2012;2012:217594. doi:10.1155/2012/217594. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

119. Fong C.S., Mazo G., Das T., Goodman J., Kim M., O’Rourke B.P., Izquierdo D., Tsou M.F. 53BP1 and USP28 mediate p53-dependent cell cycle arrest in response to centrosome loss and prolonged mitosis. eLife. 2016;5:e16270. doi:10.7554/eLife.16270. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

120. Mikule K., Delaval B., Kaldis P., Jurcyzk A., Hergert P., Doxsey S. Loss of centrosome integrity induces p38-p53-p21-dependent G1-S arrest. Nat. Cell Biol. 2007;9:160–170. doi:10.1038/ncb1529. [PubMed] [CrossRef] [Google Scholar]

121. Song L., Dai T., Xiong H., Lin C., Lin H., Shi T., Li J. Inhibition of centriole duplication by centrobin depletion leads to p38-p53 mediated cell-cycle arrest. Cell Signal. 2010;22:857–864. doi:10.1016/j.cellsig.2010.01.009. [PubMed] [CrossRef] [Google Scholar]

122. Shinmura K., Bennett R.A., Tarapore P., f*ckasawa K. Direct evidence for the role of centrosomally localized p53 in the regulation of centrosome duplication. Oncogene. 2007;26:2939–2944. doi:10.1038/sj.onc.1210085. [PubMed] [CrossRef] [Google Scholar]

123. Bornens M., Gonczy P. Centrosomes back in the limelight. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 2014;369 doi:10.1098/rstb.2013.0452. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

124. Lengauer C., Kinzler K.W., Vogelstein B. Genetic instability in colorectal cancers. Nature. 1997;386:623–627. doi:10.1038/386623a0. [PubMed] [CrossRef] [Google Scholar]

125. Bunz F., Fauth C., Speicher M.R., Dutriaux A., Sedivy J.M., Kinzler K.W., Vogelstein B., Lengauer C. Targeted inactivation of p53 in human cells does not result in aneuploidy. Cancer Res. 2002;62:1129–1133. [PubMed] [Google Scholar]

126. Ruaro E.M., Collavin L., Del Sal G., Haffner R., Oren M., Levine A.J., Schneider C. A proline-rich motif in p53 is required for transactivation-independent growth arrest as induced by Gas1. Proc. Natl. Acad. Sci. USA. 1997;94:4675–4680. doi:10.1073/pnas.94.9.4675. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

127. Walker K.K., Levine A.J. Identification of a novel p53 functional domain that is necessary for efficient growth suppression. Proc. Natl. Acad. Sci. USA. 1996;93:15335–15340. doi:10.1073/pnas.93.26.15335. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

128. Del Sal G., Ruaro E.M., Utrera R., Cole C.N., Levine A.J., Schneider C. Gas1-induced growth suppression requires a transactivation-independent p53 function. Mol. Cell. Biol. 1995;15:7152–7160. doi:10.1128/MCB.15.12.7152. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

129. Endo Y., Sugiyama A., Li S.A., Ohmori K., Ohata H., Yoshida Y., Shibuya M., Takei K., Enari M., Taya Y. Regulation of clathrin-mediated endocytosis by p53. Genes Cells. 2008;13:375–386. doi:10.1111/j.1365-2443.2008.01172.x. [PubMed] [CrossRef] [Google Scholar]

130. Muller P.A., Caswell P.T., Doyle B., Iwanicki M.P., Tan E.H., Karim S., Lukashchuk N., Gillespie D.A., Ludwig R.L., Gosselin P., et al. Mutant p53 drives invasion by promoting integrin recycling. Cell. 2009;139:1327–1341. doi:10.1016/j.cell.2009.11.026. [PubMed] [CrossRef] [Google Scholar]

131. Wylie A., Jones A.E., D’Brot A., Lu W.J., Kurtz P., Moran J.V., Rakheja D., Chen K.S., Hammer R.E., Comerford S.A., et al. p53 genes function to restrain mobile elements. Genes Dev. 2016;30:64–77. doi:10.1101/gad.266098.115. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

132. Levine A.J., Ting D.T., Greenbaum B.D. P53 and the defenses against genome instability caused by transposons and repetitive elements. Bioessays News Rev. Mol. Cell. Dev. Biol. 2016;38:508–513. doi:10.1002/bies.201600031. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

133. Tasnim S., Kelleher E.S. p53 is required for female germline stem cell maintenance in P-element hybrid dysgenesis. Dev. Biol. 2018;434:215–220. doi:10.1016/j.ydbio.2017.12.021. [PubMed] [CrossRef] [Google Scholar]

134. Harris C.R., Dewan A., Zupnick A., Normart R., Gabriel A., Prives C., Levine A.J., Hoh J. p53 responsive elements in human retrotransposons. Oncogene. 2009;28:3857–3865. doi:10.1038/onc.2009.246. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

135. Wang T., Zeng J., Lowe C.B., Sellers R.G., Salama S.R., Yang M., Burgess S.M., Brachmann R.K., Haussler D. Species-specific endogenous retroviruses shape the transcriptional network of the human tumor suppressor protein p53. Proc. Natl. Acad. Sci. USA. 2007;104:18613–18618. doi:10.1073/pnas.0703637104. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

136. Shi X., Kachirskaia I., Yamaguchi H., West L.E., Wen H., Wang E.W., Dutta S., Appella E., Gozani O. Modulation of p53 function by SET8-mediated methylation at lysine 382. Mol. Cell. 2007;27:636–646. doi:10.1016/j.molcel.2007.07.012. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

137. Laptenko O., Prives C. Transcriptional regulation by p53: One protein, many possibilities. Cell Death Differ. 2006;13:951–961. doi:10.1038/sj.cdd.4401916. [PubMed] [CrossRef] [Google Scholar]

138. Wylie A., Jones A.E., Abrams J.M. p53 in the game of transposons. Bioessays News Rev. Mol. Cell. Dev. Biol. 2016;38:1111–1116. doi:10.1002/bies.201600115. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

How the Other Half Lives: What p53 Does When It Is Not Being a Transcription Factor (2024)
Top Articles
Latest Posts
Article information

Author: Gov. Deandrea McKenzie

Last Updated:

Views: 6566

Rating: 4.6 / 5 (66 voted)

Reviews: 81% of readers found this page helpful

Author information

Name: Gov. Deandrea McKenzie

Birthday: 2001-01-17

Address: Suite 769 2454 Marsha Coves, Debbieton, MS 95002

Phone: +813077629322

Job: Real-Estate Executive

Hobby: Archery, Metal detecting, Kitesurfing, Genealogy, Kitesurfing, Calligraphy, Roller skating

Introduction: My name is Gov. Deandrea McKenzie, I am a spotless, clean, glamorous, sparkling, adventurous, nice, brainy person who loves writing and wants to share my knowledge and understanding with you.