Messenger RNA Degradation in Bacterial Cells (2024)

1. Aït-Bara S, Carpousis AJ. Characterization of the RNA degradosome of Pseudoalteromonas haloplanktis: conservation of the RNase E-RhlB interaction in the gammaproteobacteria. J Bacteriol. 2010;192:5413–5423. [PMC free article] [PubMed] [Google Scholar]

2. Amblar M, Barbas A, Fialho AM, Arraiano CM. Characterization of the functional domains of Escherichia coli RNase II. J Mol Biol. 2006;360:921–933. [PubMed] [Google Scholar]

3. Apirion D. Degradation of RNA in Escherichia coli. A hypothesis. Mol Gen Genet. 1973;122:313–322. [PubMed] [Google Scholar]

4. Apirion D. Isolation, genetic mapping and some characterization of a mutation in Escherichia coli that affects the processing of ribonuleic acid. Genetics. 1978;90:659–671. [PMC free article] [PubMed] [Google Scholar]

5. Arnold TE, Yu J, Belasco JG. mRNA stabilization by the ompA 5’ untranslated region: two protective elements hinder distinct pathways for mRNA degradation. RNA. 1998;4:319–330. [PMC free article] [PubMed] [Google Scholar]

6. Awano N, Rajagopal V, Arbing M, Patel S, Hunt J, et al. Escherichia coli RNase R has dual activities, helicase and RNase. J Bacteriol. 2010;192:1344–1352. [PMC free article] [PubMed] [Google Scholar]

7. Babitzke P, Kushner SR. The Ams (altered mRNA stability) protein and ribonuclease E are encoded by the same structural gene of Escherichia coli. Proc Natl Acad Sci USA. 1991;88:1–5. [PMC free article] [PubMed] [Google Scholar]

8. Båga M, Göransson M, Normark S, Uhlin BE. Processed mRNA with differential stability in the regulation of E. coli pilin gene expression. Cell. 1988;52:197–206. [PubMed] [Google Scholar]

9. Baker KE, Mackie GA. Ectopic RNase E sites promote bypass of 5’-end-dependent mRNA decay in Escherichia coli. Mol Microbiol. 2003;47:75–88. [PubMed] [Google Scholar]

10. Bandyra KJ, Said N, Pfeiffer V, Gorna MW, Vogel J, Luisi BF. The seed region of a small RNA drives the controlled destruction of the target mRNA by the endoribonuclease RNase E. Mol Cell. 2012;47:943–953. [PMC free article] [PubMed] [Google Scholar]

11. Bechhofer DH, Zen KH. Mechanism of erythromycin-induced ermC mRNA stability in Bacillus subtilis. J Bacteriol. 1989;171:5803–5811. [PMC free article] [PubMed] [Google Scholar]

12. Belasco JG, Nilsson G, von Gabain A, Cohen SN. The stability of E. coli gene transcripts is dependent on determinants localized to specific mRNA segments. Cell. 1986;46:245–251. [PubMed] [Google Scholar]

13. Bernstein JA, Lin PH, Cohen SN, Lin-Chao S. Global analysis of Escherichia coli RNA degradosome function using DNA microarrays. Proc Natl Acad Sci USA. 2004;101:2758–2763. [PMC free article] [PubMed] [Google Scholar]

14. Blaszczyk J, Gan J, Tropea JE, Court DL, Waugh DS, Ji X. Noncatalytic assembly of ribonuclease III with double-stranded RNA. Structure. 2004;12:457–466. [PubMed] [Google Scholar]

15. Bouvet P, Belasco JG. Control of RNase E-mediated RNA degradation by 5’-terminal base pairing in E. coli. Nature. 1992;360:488–491. [PubMed] [Google Scholar]

16. Braun F, Le Derout J, Regnier P. Ribosomes inhibit an RNase E cleavage which induces the decay of the rpsO mRNA of Escherichia coli. EMBO J. 1998;17:4790–4797. [PMC free article] [PubMed] [Google Scholar]

17. Bricker AL, Belasco JG. Importance of a 5’ stem-loop for longevity of papA mRNA in Escherichia coli. J Bacteriol. 1999;181:3587–3590. [PMC free article] [PubMed] [Google Scholar]

18. Britton RA, Wen T, Schaefer L, Pellegrini O, Uicker WC, et al. Maturation of the 5’ end of Bacillus subtilis 16S rRNA by the essential ribonuclease YkqC/RNase J1. Mol Microbiol. 2007;63:127–138. [PubMed] [Google Scholar]

19. Calin-Jageman I, Nicholson AW. Mutational analysis of an RNA internal loop as a reactivity epitope for Escherichia coli ribonuclease III substrates. Biochemistry. 2003;42:5025–5034. [PubMed] [Google Scholar]

20. Callaghan AJ, Marcaida MJ, Stead JA, McDowall KJ, Scott WG, Luisi BF. Structure of Escherichia coli RNase E catalytic domain and implications for RNA turnover. Nature. 2005;437:1187–1191. [PubMed] [Google Scholar]

21. Cao GJ, Sarkar N. Identification of the gene for an Escherichia coli poly(A) polymerase. Proc Natl Acad Sci USA. 1992;89:10380–10384. [PMC free article] [PubMed] [Google Scholar]

22. Caron MP, Bastet L, Lussier A, Simoneau-Roy M, Masse E, Lafontaine DA. Dual-acting riboswitch control of translation initiation and mRNA decay. Proc Natl Acad Sci USA. 2012;109:E3444–E3453. [PMC free article] [PubMed] [Google Scholar]

23. Carpousis AJ, Van Houwe G, Ehretsmann C, Krisch HM. Copurification of E. coli RNAase E and PNPase: evidence for a specific association between two enzymes important in RNA processing and degradation. Cell. 1994;76:889–900. [PubMed] [Google Scholar]

24. Case CC, Simons EL, Simons RW. The IS10 transposase mRNA is destabilized during antisense RNA control. EMBO J. 1990;9:1259–1266. [PMC free article] [PubMed] [Google Scholar]

25. Celesnik H, Deana A, Belasco JG. Initiation of RNA decay in Escherichia coli by 5’ pyrophosphate removal. Mol Cell. 2007;27:79–90. [PMC free article] [PubMed] [Google Scholar]

26. Chen LH, Emory SA, Bricker AL, Bouvet P, Belasco JG. Structure and function of a bacterial mRNA stabilizer: analysis of the 5’ untranslated region of ompA mRNA. J Bacteriol. 1991;173:4578–4586. [PMC free article] [PubMed] [Google Scholar]

27. Chen Z, Itzek A, Malke H, Ferretti JJ, Kreth J. Multiple roles of RNase Y in Streptococcus pyogenes mRNA processing and degradation. J Bacteriol. 2013;195:2585–2594. [PMC free article] [PubMed] [Google Scholar]

28. Cheng ZF, Deutscher MP. Purification and characterization of the Escherichia coli exoribonuclease RNase R. Comparison with RNase II. J Biol Chem. 2002;277:21624–21629. [PubMed] [Google Scholar]

29. Cheng ZF, Deutscher MP. An important role for RNase R in mRNA decay. Mol Cell. 2005;17:313–318. [PubMed] [Google Scholar]

30. Cheng ZF, Zuo Y, Li Z, Rudd KE, Deutscher MP. The vacB gene required for virulence in Shigella flexneri and Escherichia coli encodes the exoribonuclease RNase R. J Biol Chem. 1998;273:14077–14080. [PubMed] [Google Scholar]

31. Collins JA, Irnov I, Baker S, Winkler WC. Mechanism of mRNA destabilization by the glmS ribozyme. Genes Dev. 2007;21:3356–3368. [PMC free article] [PubMed] [Google Scholar]

32. Commichau FM, Rothe FM, Herzberg C, Wagner E, Hellwig D, et al. Novel activities of glycolytic enzymes in Bacillus subtilis: interactions with essential proteins involved in mRNA processing. Mol Cell Proteomics. 2009;8:1350–1360. [PMC free article] [PubMed] [Google Scholar]

33. Datta AK, Niyogi K. A novel oligoribonuclease of Escherichia coli. II. Mechanism of action. J Biol Chem. 1975;250:7313–7319. [PubMed] [Google Scholar]

34. Deana A, Belasco JG. The function of RNase G in Escherichia coli is constrained by its amino and carboxyl termini. Mol Microbiol. 2004;51:1205–1217. [PubMed] [Google Scholar]

35. Deana A, Celesnik H, Belasco JG. The bacterial enzyme RppH triggers messenger RNA degradation by 5’ pyrophosphate removal. Nature. 2008;451:355–358. [PubMed] [Google Scholar]

36. Deikus G, Condon C, Bechhofer DH. Role of Bacillus subtilis RNase J1 endonuclease and 5’-exonuclease activities in trp leader RNA turnover. J Biol Chem. 2008;283:17158–17167. [PMC free article] [PubMed] [Google Scholar]

37. Del Favero M, Mazzantini E, Briani F, Zangrossi S, Tortora P, Dehò G. Regulation of Escherichia coli polynucleotide phosphorylase by ATP. J Biol Chem. 2008;283:27355–27359. [PubMed] [Google Scholar]

38. Deltcheva E, Chylinski K, Sharma CM, Gonzales K, Chao Y, et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature. 2011;471:602–607. [PMC free article] [PubMed] [Google Scholar]

39. Desnoyers G, Bouchard MP, Masse E. New insights into small RNA-dependent translational regulation in prokaryotes. Trends Genet. 2013;29:92–98. [PubMed] [Google Scholar]

40. Deutscher MP. E. coli RNases: making sense of alphabet soup. Cell. 1985;40:731–732. [PubMed] [Google Scholar]

41. Deutscher MP, Marshall GT, Cudny H. RNase PH: an Escherichia coli phosphate-dependent nuclease distinct from polynucleotide phosphorylase. Proc Natl Acad Sci USA. 1988;85:4710–4714. [PMC free article] [PubMed] [Google Scholar]

42. Donovan WP, Kushner SR. Polynucleotide phosphorylase and ribonuclease II are required for cell viability and mRNA turnover in Escherichia coli K-12. Proc Natl Acad Sci USA. 1986;83:120–124. [PMC free article] [PubMed] [Google Scholar]

43. Dorleans A, Li de la Sierra-Gallay I, Piton J, Zig L, Gilet L, et al. Molecular basis for the recognition and cleavage of RNA by the bifunctional 5’-3’ exo/endoribonuclease RNase J. Structure. 2011;19:1252–1261. [PubMed] [Google Scholar]

44. Durand S, Gilet L, Bessieres P, Nicolas P, Condon C. Three essential ribonucleases-RNase Y, J1, and III-control the abundance of a majority of Bacillus subtilis mRNAs. PLoS Genet. 2012;8:e1002520. [PMC free article] [PubMed] [Google Scholar]

45. Durand S, Gilet L, Condon C. The essential function of B. subtilis RNase III is to silence foreign toxin genes. PLoS Genet. 2012;8:e1003181. [PMC free article] [PubMed] [Google Scholar]

46. Durand S, Richard G, Bontems F, Uzan M. Bacteriophage T4 polynucleotide kinase triggers degradation of mRNAs. Proc Natl Acad Sci USA. 2012;109:7073–7078. [PMC free article] [PubMed] [Google Scholar]

47. Dutta T, Deutscher MP. Catalytic properties of RNase BN/RNase Z from Escherichia coli: RNase BN is both an exo- and endoribonuclease. J Biol Chem. 2009;284:15425–15431. [PMC free article] [PubMed] [Google Scholar]

48. Emory SA, Bouvet P, Belasco JG. A 5’-terminal stem-loop structure can stabilize mRNA in Escherichia coli. Genes Dev. 1992;6:135–148. [PubMed] [Google Scholar]

49. Erce MA, Low JK, March PE, Wilkins MR, Takayama KM. Identification and functional analysis of RNase E of Vibrio angustum S14 and two-hybrid analysis of its interaction partners. Biochim Biophys Acta. 2009;1794:1107–1114. [PubMed] [Google Scholar]

50. Even S, Pellegrini O, Zig L, Labas V, Vinh J, et al. Ribonucleases J1 and J2: two novel endoribonucleases in B. subtilis with functional hom*ology to E. coli RNase E. Nucleic Acids Res. 2005;33:2141–2152. [PMC free article] [PubMed] [Google Scholar]

51. Fang M, Zeisberg WM, Condon C, Ogryzko V, Danchin A, Mechold U. Degradation of nanoRNA is performed by multiple redundant RNases in Bacillus subtilis. Nucleic Acids Res. 2009;37:5114–5125. [PMC free article] [PubMed] [Google Scholar]

52. Figaro S, Durand S, Gilet L, Cayet N, Sachse M, Condon C. Bacillus subtilis mutants with knockouts of the genes encoding ribonucleases RNase Y and RNase J1 are viable, with major defects in cell morphology, sporulation, and competence. J Bacteriol. 2013;195:2340–2348. [PMC free article] [PubMed] [Google Scholar]

53. Franceschini A, Szklarczyk D, Frankild S, Kuhn M, Simonovic M, et al. STRING v9.1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res. 2013;41:D808–D815. [PMC free article] [PubMed] [Google Scholar]

54. Frazao C, McVey CE, Amblar M, Barbas A, Vonrhein C, et al. Unravelling the dynamics of RNA degradation by ribonuclease II and its RNA-bound complex. Nature. 2006;443:110–114. [PubMed] [Google Scholar]

55. Fröhlich KS, Papenfort K, Fekete A, Vogel J. A small RNA activates CFA synthase by isoform-specific mRNA stabilization. EMBO J. 2013;32:2963–2979. [PMC free article] [PubMed] [Google Scholar]

56. Gan J, Tropea JE, Austin BP, Court DL, Waugh DS, Ji X. Structural insight into the mechanism of double-stranded RNA processing by ribonuclease III. Cell. 2006;124:355–366. [PubMed] [Google Scholar]

57. Gao J, Lee K, Zhao M, Qiu J, Zhan X, et al. Differential modulation of E. coli mRNA abundance by inhibitory proteins that alter the composition of the degradosome. Mol Microbiol. 2006;61:394–406. [PubMed] [Google Scholar]

58. Ghosh S, Deutscher MP. Oligoribonuclease is an essential component of the mRNA decay pathway. Proc Natl Acad Sci USA. 1999;96:4372–4377. [PMC free article] [PubMed] [Google Scholar]

59. Goldman SR, Sharp JS, Vvedenskaya IO, Livny J, Dove SL, Nickels BE. NanoRNAs prime transcription initiation in vivo. Mol Cell. 2011;42:817–825. [PMC free article] [PubMed] [Google Scholar]

60. Górna MW, Pietras Z, Tsai YC, Callaghan AJ, Hernández H, et al. The regulatory protein RraA modulates RNA-binding and helicase activities of the E. coli RNA degradosome. RNA. 2010;16:553–562. [PMC free article] [PubMed] [Google Scholar]

61. Grunberg-Manago M. Enzymatic Synthesis of Nucleic Acids. Prog Biophys Mol Biol. 1963;13:175–239. [PubMed] [Google Scholar]

62. Hajnsdorf E, Braun F, Haugel-Nielsen J, Regnier P. Polyadenylylation destabilizes the rpsO mRNA of Escherichia coli. Proc Natl Acad Sci USA. 1995;92:3973–3977. [PMC free article] [PubMed] [Google Scholar]

63. Hajnsdorf E, Régnier P. Host factor Hfq of Escherichia coli stimulates elongation of poly(A) tails by poly(A) polymerase I. Proc Natl Acad Sci USA. 2000;97:1501–1505. [PMC free article] [PubMed] [Google Scholar]

64. Hajnsdorf E, Steier O, Coscoy L, Teysset L, Regnier P. Roles of RNase E, RNase II and PNPase in the degradation of the rpsO transcripts of Escherichia coli: stabilizing function of RNase II and evidence for efficient degradation in an ams pnp rnb mutant. EMBO J. 1994;13:3368–3377. [PMC free article] [PubMed] [Google Scholar]

65. Hambraeus G, Karhumaa K, Rutberg B. A 5’ stem-loop and ribosome binding but not translation are important for the stability of Bacillus subtilis aprE leader mRNA. Microbiology. 2002;148:1795–1803. [PubMed] [Google Scholar]

66. Hansen MJ, Chen LH, Fejzo ML, Belasco JG. The ompA 5’ untranslated region impedes a major pathway for mRNA degradation in Escherichia coli. Mol Microbiol. 1994;12:707–716. [PubMed] [Google Scholar]

67. Hardwick SW, Chan VS, Broadhurst RW, Luisi BF. An RNA degradosome assembly in Caulobacter crescentus. Nucleic Acids Res. 2011;39:1449–1459. [PMC free article] [PubMed] [Google Scholar]

68. Hayes CS, Sauer RT. Cleavage of the A site mRNA codon during ribosome pausing provides a mechanism for translational quality control. Mol Cell. 2003;12:903–911. [PubMed] [Google Scholar]

69. Heck C, Balzer A, Fuhrmann O, Klug G. Initial events in the degradation of the polycistronic puf mRNA in Rhodobacter capsulatus and consequences for further processing steps. Mol Microbiol. 2000;35:90–100. [PubMed] [Google Scholar]

70. Hsieh PK, Richards J, Liu Q, Belasco JG. Specificity of RppH-dependent RNA degradation in Bacillus subtilis. Proc Natl Acad Sci USA. 2013;110:8864–8869. [PMC free article] [PubMed] [Google Scholar]

71. Hurley JM, Cruz JW, Ouyang M, Woychik NA. Bacterial toxin RelE mediates frequent codon-independent mRNA cleavage from the 5’ end of coding regions in vivo. J Biol Chem. 2011;286:14770–14778. [PMC free article] [PubMed] [Google Scholar]

72. Jäger S, Fuhrmann O, Heck C, Hebermehl M, Schiltz E, et al. An mRNA degrading complex in Rhodobacter capsulatus. Nucleic Acids Res. 2001;29:4581–4588. [PMC free article] [PubMed] [Google Scholar]

73. Jain C. Novel role for RNase PH in the degradation of structured RNA. J Bacteriol. 2012;194:3883–3890. [PMC free article] [PubMed] [Google Scholar]

74. Jain C, Belasco JG. RNase E autoregulates its synthesis by controlling the degradation rate of its own mRNA in Escherichia coli: unusual sensitivity of the rne transcript to RNase E activity. Genes Dev. 1995;9:84–96. [PubMed] [Google Scholar]

75. Jarrige AC, Mathy N, Portier C. PNPase autocontrols its expression by degrading a double-stranded structure in the pnp mRNA leader. EMBO J. 2001;20:6845–6855. [PMC free article] [PubMed] [Google Scholar]

76. Jiang X, Diwa A, Belasco JG. Regions of RNase E important for 5’-end-dependent RNA cleavage and autoregulated synthesis. J Bacteriol. 2000;182:2468–2475. [PMC free article] [PubMed] [Google Scholar]

77. Karzai AW, Roche ED, Sauer RT. The SsrA-SmpB system for protein tagging, directed degradation and ribosome rescue. Nat Struct Biol. 2000;7:449–455. [PubMed] [Google Scholar]

78. Khemici V, Poljak L, Luisi BF, Carpousis AJ. The RNase E of Escherichia coli is a membrane-binding protein. Mol Microbiol. 2008;70:799–813. [PMC free article] [PubMed] [Google Scholar]

79. Khemici V, Poljak L, Toesca I, Carpousis AJ. Evidence in vivo that the DEAD-box RNA helicase RhlB facilitates the degradation of ribosome-free mRNA by RNase E. Proc Natl Acad Sci USA. 2005;102:6913–6918. [PMC free article] [PubMed] [Google Scholar]

80. Kim KS, Manasherob R, Cohen SN. YmdB: a stress-responsive ribonuclease-binding regulator of E. coli RNase III activity. Genes Dev. 2008;22:3497–3508. [PMC free article] [PubMed] [Google Scholar]

81. Koga M, Otsuka Y, Lemire S, Yonesaki T. Escherichia coli rnlA and rnlB compose a novel toxin-antitoxin system. Genetics. 2011;187:123–130. [PMC free article] [PubMed] [Google Scholar]

82. Laalami S, Bessieres P, Rocca A, Zig L, Nicolas P, Putzer H. Bacillus subtilis RNase Y activity in vivo analysed by tiling microarrays. PLoS One. 2013;8:e54062. [PMC free article] [PubMed] [Google Scholar]

83. Lamontagne B, Elela SA. Evaluation of the RNA determinants for bacterial and yeast RNase III binding and cleavage. J Biol Chem. 2004;279:2231–2241. [PubMed] [Google Scholar]

84. Lee K, Bernstein JA, Cohen SN. RNase G complementation of rne null mutation identifies functional interrelationships with RNase E in Escherichia coli. Mol Microbiol. 2002;43:1445–1456. [PubMed] [Google Scholar]

85. Lee K, Zhan X, Gao J, Qiu J, Feng Y, et al. RraA. a protein inhibitor of RNase E activity that globally modulates RNA abundance in E. coli. Cell. 2003;114:623–634. [PubMed] [Google Scholar]

86. Lehnik-Habrink M, Newman J, Rothe FM, Solovyova AS, Rodrigues C, et al. RNase Y in Bacillus subtilis: a natively disordered protein that is the functional equivalent of RNase E from Escherichia coli. J Bacteriol. 2011;193:5431–5441. [PMC free article] [PubMed] [Google Scholar]

87. Lehnik-Habrink M, Pförtner H, Rempeters L, Pietack N, Herzberg C, Stülke J. The RNA degradosome in Bacillus subtilis: identification of CshA as the major RNA helicase in the multiprotein complex. Mol Microbiol. 2010;77:958–971. [PubMed] [Google Scholar]

88. Lehnik-Habrink M, Schaffer M, Mader U, Diethmaier C, Herzberg C, Stulke J. RNA processing in Bacillus subtilis: identification of targets of the essential RNase Y. Mol Microbiol. 2011;81:1459–1473. [PubMed] [Google Scholar]

89. Leroy A, Vanzo NF, Sousa S, Dreyfus M, Carpousis AJ. Function in Escherichia coli of the non-catalytic part of RNase E: role in the degradation of ribosome-free mRNA. Mol Microbiol. 2002;45:1231–1243. [PubMed] [Google Scholar]

90. Letunic I, Bork P. Interactive Tree Of Life v2: online annotation and display of phylogenetic trees made easy. Nucleic Acids Res. 2011;39:W475–W478. [PMC free article] [PubMed] [Google Scholar]

91. Li de la Sierra-Gallay I, Zig L, Jamalli A, Putzer H. Structural insights into the dual activity of RNase J. Nat Struct Mol Biol. 2008;15:206–212. [PubMed] [Google Scholar]

92. Li X, Hirano R, Tagami H, Aiba H. Protein tagging at rare codons is caused by tmRNA action at the 3’ end of nonstop mRNA generated in response to ribosome stalling. RNA. 2006;12:248–255. [PMC free article] [PubMed] [Google Scholar]

93. Li Y, Altman S. A specific endoribonuclease, RNase P, affects gene expression of polycistronic operon mRNAs. Proc Natl Acad Sci USA. 2003;100:13213–13218. [PMC free article] [PubMed] [Google Scholar]

94. Liang W, Malhotra A, Deutscher MP. Acetylation regulates the stability of a bacterial protein: growth stage-dependent modification of RNase R. Mol Cell. 2011;44:160–166. [PMC free article] [PubMed] [Google Scholar]

95. Liou GG, Chang HY, Lin CS, Lin-Chao S. DEAD box RhlB RNA helicase physically associates with exoribonuclease PNPase to degrade double-stranded RNA independent of the degradosome-assembling region of RNase E. J Biol Chem. 2002;277:41157–41162. [PubMed] [Google Scholar]

96. Liu MF, Cescau S, Mechold U, Wang J, Cohen D, et al. Identification of a novel nanoRNase in Bartonella. Microbiology. 2012;158:886–895. [PubMed] [Google Scholar]

97. Loomis WP, Koo JT, Cheung TP, Moseley SL. A tripeptide sequence within the nascent DaaP protein is required for mRNA processing of a fimbrial operon in Escherichia coli. Mol Microbiol. 2001;39:693–707. [PubMed] [Google Scholar]

98. Luciano DJ, Hui MP, Deana A, Foley PL, Belasco KJ, Belasco JG. Differential control of the rate of 5’-end-dependent mRNA degradation in Escherichia coli. J Bacteriol. 2012;194:6233–6239. [PMC free article] [PubMed] [Google Scholar]

99. Mackie GA. Ribonuclease E is a 5’-end-dependent endonuclease. Nature. 1998;395:720–723. [PubMed] [Google Scholar]

100. Marchand I, Nicholson AW, Dreyfus M. Bacteriophage T7 protein kinase phosphorylates RNase E and stabilizes mRNAs synthesized by T7 RNA polymerase. Mol Microbiol. 2001;42:767–776. [PubMed] [Google Scholar]

101. Marincola G, Schafer T, Behler J, Bernhardt J, Ohlsen K, et al. RNase Y of Staphylococcus aureus and its role in the activation of virulence genes. Mol Microbiol. 2012;85:817–832. [PubMed] [Google Scholar]

102. Massé E, Escorcia FE, Gottesman S. Coupled degradation of a small regulatory RNA and its mRNA targets in Escherichia coli. Genes Dev. 2003;17:2374–2383. [PMC free article] [PubMed] [Google Scholar]

103. Mathy N, Benard L, Pellegrini O, Daou R, Wen T, Condon C. 5’-to-3’ exoribonuclease activity in bacteria: role of RNase J1 in rRNA maturation and 5’ stability of mRNA. Cell. 2007;129:681–692. [PubMed] [Google Scholar]

104. Mathy N, Hebert A, Mervelet P, Benard L, Dorleans A, et al. Bacillus subtilis ribonucleases J1 and J2 form a complex with altered enzyme behaviour. Mol Microbiol. 2010;75:489–498. [PubMed] [Google Scholar]

105. Matos RG, Barbas A, Gomez-Puertas P, Arraiano CM. Swapping the domains of exoribonucleases RNase II and RNase R: conferring upon RNase II the ability to degrade ds RNA. Proteins. 2011;79:1853–1867. [PubMed] [Google Scholar]

106. Matsunaga J, Simons EL, Simons RW. RNase III autoregulation: structure and function of rncO, the posttranscriptional “operator” RNA. 1996;2:1228–1240. [PMC free article] [PubMed] [Google Scholar]

107. McCullen CA, Benhammou JN, Majdalani N, Gottesman S. Mechanism of positive regulation by DsrA and RprA small noncoding RNAs: pairing increases translation and protects rpoS mRNA from degradation. J Bacteriol. 2010;192:5559–5571. [PMC free article] [PubMed] [Google Scholar]

108. McDowall KJ, Cohen SN. The N-terminal domain of the rne gene product has RNase E activity and is non-overlapping with the arginine-rich RNA-binding site. J Mol Biol. 1996;255:349–355. [PubMed] [Google Scholar]

109. McDowall KJ, Hernandez RG, Lin-Chao S, Cohen SN. The ams-1 and rne-3071 temperature-sensitive mutations in the ams gene are in close proximity to each other and cause substitutions within a domain that resembles a product of the Escherichia coli mre locus. J Bacteriol. 1993;175:4245–4249. [PMC free article] [PubMed] [Google Scholar]

110. McDowall KJ, Lin-Chao S, Cohen SN. A+U content rather than a particular nucleotide order determines the specificity of RNase E cleavage. J Biol Chem. 1994;269:10790–10796. [PubMed] [Google Scholar]

111. Mechold U, Fang G, Ngo S, Ogryzko V, Danchin A. YtqI from Bacillus subtilis has both oligoribonuclease and pAp-phosphatase activity. Nucleic Acids Res. 2007;35:4552–4561. [PMC free article] [PubMed] [Google Scholar]

112. Melefors O, von Gabain A. Genetic studies of cleavage-initiated mRNA decay and processing of ribosomal 9S RNA show that the Escherichia coli ams and rne loci are the same. Mol Microbiol. 1991;5:857–864. [PubMed] [Google Scholar]

113. Meng W, Nicholson AW. Heterodimer-based analysis of subunit and domain contributions to double-stranded RNA processing by Escherichia coli RNase III in vitro. Biochem J. 2008;410:39–48. [PubMed] [Google Scholar]

114. Mohanty BK, Kushner SR. Polynucleotide phosphorylase functions both as a 3’→5’ exonuclease and a poly(A) polymerase in Escherichia coli. Proc Natl Acad Sci USA. 2000;97:11966–11971. [PMC free article] [PubMed] [Google Scholar]

115. Moller T, Franch T, Hojrup P, Keene DR, Bachinger HP, et al. Hfq: a bacterial Sm-like protein that mediates RNA-RNA interaction. Mol Cell. 2002;9:23–30. [PubMed] [Google Scholar]

116. Morita T, Kawamoto H, Mizota T, Inada T, Aiba H. Enolase in the RNA degradosome plays a crucial role in the rapid decay of glucose transporter mRNA in the response to phosphosugar stress in Escherichia coli. Mol Microbiol. 2004;54:1063–1075. [PubMed] [Google Scholar]

117. Morita T, Maki K, Aiba H. RNase E-based ribonucleoprotein complexes: mechanical basis of mRNA destabilization mediated by bacterial noncoding RNAs. Genes Dev. 2005;19:2176–2186. [PMC free article] [PubMed] [Google Scholar]

118. Mott JE, Galloway JL, Platt T. Maturation of Escherichia coli tryptophan operon mRNA: evidence for 3’ exonucleolytic processing after rho-dependent termination. EMBO J. 1985;4:1887–1891. [PMC free article] [PubMed] [Google Scholar]

119. Mudd EA, Krisch HM, Higgins CF. RNase E, an endoribonuclease, has a general role in the chemical decay of Escherichia coli mRNA: evidence that rne and ams are the same genetic locus. Mol Microbiol. 1990;4:2127–2135. [PubMed] [Google Scholar]

120. Newbury SF, Smith NH, Higgins CF. Differential mRNA stability controls relative gene expression within a polycistronic operon. Cell. 1987;51:1131–1143. [PubMed] [Google Scholar]

121. Newbury SF, Smith NH, Robinson EC, Hiles ID, Higgins CF. Stabilization of translationally active mRNA by prokaryotic REP sequences. Cell. 1987;48:297–310. [PubMed] [Google Scholar]

122. Nilsson G, Belasco JG, Cohen SN, von Gabain A. Effect of premature termination of translation on mRNA stability depends on the site of ribosome release. Proc Natl Acad Sci USA. 1987;84:4890–4894. [PMC free article] [PubMed] [Google Scholar]

123. Nou X, Kadner RJ. Coupled changes in translation and transcription during cobalamin-dependent regulation of btuB expression in Escherichia coli. J Bacteriol. 1998;180:6719–6728. [PMC free article] [PubMed] [Google Scholar]

124. Nurmohamed S, Vincent HA, Titman CM, Chandran V, Pears MR, et al. Polynucleotide phosphorylase activity may be modulated by metabolites in Escherichia coli. J Biol Chem. 2011;286:14315–14323. [PMC free article] [PubMed] [Google Scholar]

125. O’Hara EB, Chekanova JA, Ingle CA, Kushner ZR, Peters E, Kushner SR. Polyadenylylation helps regulate mRNA decay in Escherichia coli. Proc Natl Acad Sci USA. 1995;92:1807–1811. [PMC free article] [PubMed] [Google Scholar]

126. Ono M, Kuwano M. A conditional lethal mutation in an Escherichia coli strain with a longer chemical lifetime of messenger RNA. J Mol Biol. 1979;129:343–357. [PubMed] [Google Scholar]

127. Otsuka Y, Yonesaki T. Dmd of bacteriophage T4 functions as an antitoxin against Escherichia coli LsoA and RnlA toxins. Mol Microbiol. 2012;83:669–681. [PubMed] [Google Scholar]

128. Papenfort K, Sun Y, Miyakoshi M, Vanderpool CK, Vogel J. Small RNA-mediated activation of sugar phosphatase mRNA regulates glucose homeostasis. Cell. 2013;153:426–437. [PMC free article] [PubMed] [Google Scholar]

129. Pertzev AV, Nicholson AW. Characterization of RNA sequence determinants and antideterminants of processing reactivity for a minimal substrate of Escherichia coli ribonuclease III. Nucleic Acids Res. 2006;34:3708–3721. [PMC free article] [PubMed] [Google Scholar]

130. Perwez T, Kushner SR. RNase Z in Escherichia coli plays a significant role in mRNA decay. Mol Microbiol. 2006;60:723–737. [PubMed] [Google Scholar]

131. Pfeiffer V, Papenfort K, Lucchini S, Hinton JC, Vogel J. Coding sequence targeting by MicC RNA reveals bacterial mRNA silencing downstream of translational initiation. Nat Struct Mol Biol. 2009;16:840–846. [PubMed] [Google Scholar]

132. Py B, Higgins CF, Krisch HM, Carpousis AJ. A DEAD-box RNA helicase in the Escherichia coli RNA degradosome. Nature. 1996;381:169–172. [PubMed] [Google Scholar]

133. Ramirez-Peña E, Treviño J, Liu Z, Perez N, Sumby P. The group A Streptococcus small regulatory RNA FasX enhances streptokinase activity by increasing the stability of the ska mRNA transcript. Mol Microbiol. 2010;78:1332–1347. [PMC free article] [PubMed] [Google Scholar]

134. Richards J, Liu Q, Pellegrini O, Celesnik H, Yao S, et al. An RNA pyrophosphohydrolase triggers 5’-exonucleolytic degradation of mRNA in Bacillus subtilis. Mol Cell. 2011;43:940–949. [PMC free article] [PubMed] [Google Scholar]

135. Richards J, Luciano DJ, Belasco JG. Influence of translation on RppH-dependent mRNA degradation in Escherichia coli. Mol Microbiol. 2012;86:1063–1072. [PMC free article] [PubMed] [Google Scholar]

136. Richards J, Mehta P, Karzai AW. RNase R degrades non-stop mRNAs selectively in an SmpB-tmRNA-dependent manner. Mol Microbiol. 2006;62:1700–1712. [PubMed] [Google Scholar]

137. Robertson HD. Escherichia coli ribonuclease III cleavage sites. Cell. 1982;30:669–672. [PubMed] [Google Scholar]

138. Robertson HD, Webster RE, Zinder ND. Purification and properties of ribonuclease III from Escherichia coli. J Biol Chem. 1968;243:82–91. [PubMed] [Google Scholar]

139. Roux CM, DeMuth JP, Dunman PM. Characterization of components of the Staphylococcus aureus mRNA degradosome holoenzyme-like complex. J Bacteriol. 2011;193:5520–5526. [PMC free article] [PubMed] [Google Scholar]

140. Sandler P, Weisblum B. Erythromycin-induced ribosome stall in the ermA leader: a barricade to 5’-to-3’ nucleolytic cleavage of the ermA transcript. J Bacteriol. 1989;171:6680–6688. [PMC free article] [PubMed] [Google Scholar]

141. Shahbabian K, Jamalli A, Zig L, Putzer H. RNase Y, a novel endoribonuclease, initiates riboswitch turnover in Bacillus subtilis. EMBO J. 2009;28:3523–3533. [PMC free article] [PubMed] [Google Scholar]

142. Sharp JS, Bechhofer DH. Effect of translational signals on mRNA decay in Bacillus subtilis. J Bacteriol. 2003;185:5372–5379. [PMC free article] [PubMed] [Google Scholar]

143. Sharp JS, Bechhofer DH. Effect of 5’-proximal elements on decay of a model mRNA in Bacillus subtilis. Mol Microbiol. 2005;57:484–495. [PubMed] [Google Scholar]

144. Sim SH, Yeom JH, Shin C, Song WS, Shin E, et al. Escherichia coli ribonuclease III activity is downregulated by osmotic stress: consequences for the degradation of bdm mRNA in biofilm formation. Mol Microbiol. 2010;75:413–425. [PubMed] [Google Scholar]

145. Spickler C, Mackie GA. Action of RNase II and polynucleotide phosphorylase against RNAs containing stem-loops of defined structure. J Bacteriol. 2000;182:2422–2427. [PMC free article] [PubMed] [Google Scholar]

146. Stead MB, Marshburn S, Mohanty BK, Mitra J, Pena Castillo L, et al. Analysis of Escherichia coli RNase E and RNase III activity in vivo using tiling microarrays. Nucleic Acids Res. 2011;39:3188–3203. [PMC free article] [PubMed] [Google Scholar]

147. Stern MJ, Ames GF, Smith NH, Robinson EC, Higgins CF. Repetitive extragenic palindromic sequences: a major component of the bacterial genome. Cell. 1984;37:1015–1026. [PubMed] [Google Scholar]

148. Stickney LM, Hankins JS, Miao X, Mackie GA. Function of the conserved S1 and KH domains in polynucleotide phosphorylase. J Bacteriol. 2005;187:7214–7221. [PMC free article] [PubMed] [Google Scholar]

149. Storz G, Vogel J, Wassarman KM. Regulation by small RNAs in bacteria: expanding frontiers. Mol Cell. 2011;43:880–891. [PMC free article] [PubMed] [Google Scholar]

150. Symmons MF, Jones GH, Luisi BF. A duplicated fold is the structural basis for polynucleotide phosphorylase catalytic activity, processivity, and regulation. Structure. 2000;8:1215–1226. [PubMed] [Google Scholar]

151. Taraseviciene L, Miczak A, Apirion D. The gene specifying RNase E (rne) and a gene affecting mRNA stability (ams) are the same gene. Mol Microbiol. 1991;5:851–855. [PubMed] [Google Scholar]

152. Tock MR, Walsh AP, Carroll G, McDowall KJ. The CafA protein required for the 5’-maturation of 16 S rRNA is a 5’-end-dependent ribonuclease that has context-dependent broad sequence specificity. J Biol Chem. 2000;275:8726–8732. [PubMed] [Google Scholar]

153. Vanzo NF, Li YS, Py B, Blum E, Higgins CF, et al. Ribonuclease E organizes the protein interactions in the Escherichia coli RNA degradosome. Genes Dev. 1998;12:2770–2781. [PMC free article] [PubMed] [Google Scholar]

154. Vincent HA, Deutscher MP. The roles of individual domains of RNase R in substrate binding and exoribonuclease activity. The nuclease domain is sufficient for digestion of structured RNA. J Biol Chem. 2009;284:486–494. [PMC free article] [PubMed] [Google Scholar]

155. von Gabain A, Belasco JG, Schottel JL, Chang AC, Cohen SN. Decay of mRNA in Escherichia coli: investigation of the fate of specific segments of transcripts. Proc Natl Acad Sci USA. 1983;80:653–657. [PMC free article] [PubMed] [Google Scholar]

156. Xu F, Cohen SN. RNA degradation in Escherichia coli regulated by 3’ adenylation and 5’ phosphorylation. Nature. 1995;374:180–183. [PubMed] [Google Scholar]

157. Xu F, Lin-Chao S, Cohen SN. The Escherichia coli pcnB gene promotes adenylylation of antisense RNAI of ColE1-type plasmids in vivo and degradation of RNAI decay intermediates. Proc Natl Acad Sci USA. 1993;90:6756–6760. [PMC free article] [PubMed] [Google Scholar]

158. Yamaguchi Y, Park JH, Inouye M. Toxin-antitoxin systems in bacteria and archaea. Annu Rev Genet. 2011;45:61–79. [PubMed] [Google Scholar]

159. Yao S, Bechhofer DH. Initiation of decay of Bacillus subtilis rpsO mRNA by endoribonuclease RNase Y. J Bacteriol. 2010;192:3279–3286. [PMC free article] [PubMed] [Google Scholar]

160. Yao S, Sharp JS, Bechhofer DH. Bacillus subtilis RNase J1 endonuclease and 5’ exonuclease activities in the turnover of ΔermC mRNA. RNA. 2009;15:2331–2339. [PMC free article] [PubMed] [Google Scholar]

161. Yarchuk O, Jacques N, Guillerez J, Dreyfus M. Interdependence of translation, transcription and mRNA degradation in the lacZ gene. J Mol Biol. 1992;226:581–596. [PubMed] [Google Scholar]

162. Zhang K, Nicholson AW. Regulation of ribonuclease III processing by double-helical sequence antideterminants. Proc Natl Acad Sci USA. 1997;94:13437–13441. [PMC free article] [PubMed] [Google Scholar]

163. Zuo Y, Deutscher MP. Exoribonuclease superfamilies: structural analysis and phylogenetic distribution. Nucleic Acids Res. 2001;29:1017–1026. [PMC free article] [PubMed] [Google Scholar]

Messenger RNA Degradation in Bacterial Cells (2024)
Top Articles
Articles
Chargeback Rebuttal Letters: Explanation and Samples
Libiyi Sawsharpener
Lorton Transfer Station
Wizard Build Season 28
How to change your Android phone's default Google account
Craigslist In Fredericksburg
Riegler & Partner Holding GmbH auf LinkedIn: Wie schätzen Sie die Entwicklung der Wohnraumschaffung und Bauwirtschaft…
Xrarse
Heska Ulite
Giovanna Ewbank Nua
Garrick Joker'' Hastings Sentenced
R Tiktoksweets
2135 Royalton Road Columbia Station Oh 44028
R/Afkarena
My.tcctrack
Blackwolf Run Pro Shop
The Exorcist: Believer (2023) Showtimes
Trivago Sf
[Cheryll Glotfelty, Harold Fromm] The Ecocriticism(z-lib.org)
Why Should We Hire You? - Professional Answers for 2024
Why do rebates take so long to process?
Panola County Busted Newspaper
Sandals Travel Agent Login
The 15 Best Sites to Watch Movies for Free (Legally!)
Cars & Trucks - By Owner near Kissimmee, FL - craigslist
Meijer Deli Trays Brochure
Truck from Finland, used truck for sale from Finland
Weather October 15
Hwy 57 Nursery Michie Tn
Log in or sign up to view
Darktide Terrifying Barrage
The value of R in SI units is _____?
South Florida residents must earn more than $100,000 to avoid being 'rent burdened'
Xfinity Outage Map Lacey Wa
Kattis-Solutions
UPS Drop Off Location Finder
Craigslist Ludington Michigan
Strange World Showtimes Near Atlas Cinemas Great Lakes Stadium 16
Giantess Feet Deviantart
4083519708
Nobodyhome.tv Reddit
Deshuesadero El Pulpo
Ursula Creed Datasheet
Pulitzer And Tony Winning Play About A Mathematical Genius Crossword
Sechrest Davis Funeral Home High Point Nc
Sacramentocraiglist
A Man Called Otto Showtimes Near Cinemark Greeley Mall
Erica Mena Net Worth Forbes
Craigslist Psl
211475039
Latest Posts
Article information

Author: Terrell Hackett

Last Updated:

Views: 6237

Rating: 4.1 / 5 (72 voted)

Reviews: 87% of readers found this page helpful

Author information

Name: Terrell Hackett

Birthday: 1992-03-17

Address: Suite 453 459 Gibson Squares, East Adriane, AK 71925-5692

Phone: +21811810803470

Job: Chief Representative

Hobby: Board games, Rock climbing, Ghost hunting, Origami, Kabaddi, Mushroom hunting, Gaming

Introduction: My name is Terrell Hackett, I am a gleaming, brainy, courageous, helpful, healthy, cooperative, graceful person who loves writing and wants to share my knowledge and understanding with you.