Research Advances in Superabsorbent Polymers (2024)

1. Buchholz F.L., Graham A.T. Modern Superabsorbent Polymer Technology. Wiley-VCH; New York, NY, USA: 1998. [Google Scholar]

2. Fanta G.F., Burr R.C., Russell C.R., Rist C.E. Graft copolymers of starch. I. Copolymerization of gelatinized wheat starch with acrylonitrile. Fractionation of copolymer and effect of solvent on copolymer composition. J. Appl. Polym. Sci. 1966;10:929–937. doi:10.1002/app.1966.070100610. [CrossRef] [Google Scholar]

3. Fanta G.F., Burr R.C., Russell C.R., Rist C.E. Graft copolymers of starch. II. Copolymerization of gelatinized wheat starch with acrylonitrile: Influence of reaction conditions on copolymer composition. J. Polym. Sci. Part B Polym. Lett. 1966;4:765–769. doi:10.1002/pol.1966.110041018. [CrossRef] [Google Scholar]

4. Fanta G.F., Burr R.C., Russell C.R., Rist C.E. Graft copolymers of starch. III. Copolymerization of gelatinized wheat starch with acrylonitrile. Influence of chain modifiers on copolymer composition. J. Appl. Polym. Sci. 1967;11:457–463. doi:10.1002/app.1967.070110312. [CrossRef] [Google Scholar]

5. Athawale V.D., Lele V. Recent trends in hydrogels based on starch-graft-acrylic acid: A review. Starch. 2001;53:7–13. doi:10.1002/1521-379X(200101)53:1<7::AID-STAR7>3.0.CO;2-Q. [CrossRef] [Google Scholar]

6. Zohuriaan-Mehr M.J., Kabiri K. Superabsorbent polymer materials: A review. Iran. Polym. J. 2008;17:451–477. [Google Scholar]

7. Gooch J.W., editor. Encyclopedic Dictionary of Polymers. Springer; New York, NY, USA: 2011. Super absorbent fibers; pp. 712–714. [CrossRef] [Google Scholar]

8. Fanta G.F., Burr R.C., Doane W.M., Russell C.R. Absorbent polymers from starch and flour through graft polymerization of acrylonitrile and comonomer mixtures. Starch. 1978;30:237–242. doi:10.1002/star.19780300706. [CrossRef] [Google Scholar]

9. Capezza A., Newson W.R., Olsson R.T., Hedenqvist M.S., Johansson E. Advances in the use of protein-based materials: Toward sustainable naturally sourced absorbent materials. ACS Sustain. Chem. Eng. 2019;7:4532–4547. doi:10.1021/acssuschemeng.8b05400. [CrossRef] [Google Scholar]

10. Ma J., Li X., Bao Y. Advances in cellulose-based superabsorbent hydrogels. RSC Adv. 2015;5:59745–59757. doi:10.1039/C5RA08522E. [CrossRef] [Google Scholar]

11. Zhang J., Wang Q., Wang A. Synthesis and characterization of chitosan-g-poly(acrylic acid)/attapulgite superabsorbent composites. Carbohydr. Polym. 2007;68:367–374. doi:10.1016/j.carbpol.2006.11.018. [CrossRef] [Google Scholar]

12. Laftah W.A., Hashim S., Ibrahim A.N. Polymer hydrogels: A review. Polym. Plast. Technol. Eng. 2011;50:1475–1486. doi:10.1080/03602559.2011.593082. [CrossRef] [Google Scholar]

13. Zohuriaan-Mehr M.J., Omidian H., Doroudiani S., Kabiri K. Advances in non-hygienic applications of superabsorbent hydrogel materials. J. Mater. Sci. 2010;45:5711–5735. doi:10.1007/s10853-010-4780-1. [CrossRef] [Google Scholar]

14. Cheng B., Pei B., Wang Z., Hu Q. Advances in chitosan-based superabsorbent hydrogels. RSC Adv. 2017;7:42036–42046. doi:10.1039/C7RA07104C. [CrossRef] [Google Scholar]

15. Zohuriaan-Mehr M.J., Pourjavadi A., Salimi H., Kurdtabar M. Protein- and hom*o poly(amino acid)-based hydrogels with super-swelling properties. Polym. Adv. Technol. 2009;20:655–671. doi:10.1002/pat.1395. [CrossRef] [Google Scholar]

16. Liu Q.X., Ding Z.R., Dong Z. Swelling behaviors of acrylic-based superabsorbent fibers. Adv. Mater. Res. 2012;476–478:1331–1335. doi:10.4028/www.scientific.net/AMR.476-478.1331. [CrossRef] [Google Scholar]

17. Feng D., Bai B., Ding C., Wang H., Suo Y. Synthesis and Swelling Behaviors of Yeast-g-poly(acrylic acid) Superabsorbent Co-polymer. Ind. Eng. Chem. Res. 2014;53:12760–12769. doi:10.1021/ie502248n. [CrossRef] [Google Scholar]

18. Pourjavadi A., Zohuriaan-Mehr M.J., Ghasempoori S.N., Hossienzadeh H. Modified CMC. V. Synthesis and super-swelling behavior of hydrolyzed CMC-g-PAN hydrogel. J. Appl. Polym. Sci. 2007;103:877–883. doi:10.1002/app.25224. [CrossRef] [Google Scholar]

19. Mucientes A.E., Santiago F., Delgado A.M. Effect of initial N,N′-methylene bisacrylamide concentration on the swelling behaviour of acrylic-based superabsorbent polymers. Pol. J. Chem. 2005;79:897–905. [Google Scholar]

20. Fang S., Wang G., Xing R., Chen X., Liu S., Qin Y., Li K., Wang X., Li R., Li P. Synthesis of superabsorbent polymers based on chitosan derivative graft acrylic acid-co-acrylamide and its property testing. Int. J. Biol. Macromol. 2019;132:575–584. doi:10.1016/j.ijbiomac.2019.03.176. [PubMed] [CrossRef] [Google Scholar]

21. Utech S., Boccaccini A.R. A review of hydrogel-based composites for biomedical applications: Enhancement of hydrogel properties by addition of rigid inorganic fillers. J. Mater. Sci. 2016;51:271–310. doi:10.1007/s10853-015-9382-5. [CrossRef] [Google Scholar]

22. Husain M.S.B., Gupta A., Alashwal B.Y., Sharma S. Synthesis of PVA/PVP based hydrogel for biomedical applications: A review. Energy Sources Part A Recover. Util. Environ. Eff. 2018;40:2388–2393. doi:10.1080/15567036.2018.1495786. [CrossRef] [Google Scholar]

23. Shalla A.H., Yaseen Z., Bhat M.A., Rangreez T.A., Maswal M. Recent review for removal of metal ions by hydrogels. Sep. Sci. Technol. 2019;54:89–100. doi:10.1080/01496395.2018.1503307. [CrossRef] [Google Scholar]

24. Atta A.M., Abdel-Rahman A.A.-H., El Aassy I.E., Ahmed F.Y., Hamza M.F. Adsorption properties of uranium (VI) ions on reactive crosslinked Acrylamidoxime and acrylic acid copolymer resins. J. Dispers. Sci. Technol. 2010;32:84–94. doi:10.1080/00377990903543053. [CrossRef] [Google Scholar]

25. Zhang S., Chen H., Liu S., Guo J. Superabsorbent polymer with high swelling ratio, and temperature-sensitive and magnetic properties employed as an efficient dewatering medium of fine coal. Energy Fuels. 2017;31:1825–1831. doi:10.1021/acs.energyfuels.6b03083. [CrossRef] [Google Scholar]

26. Huang X., Jiang W., Zhou J., Yu D.-G., Liu H. The Applications of Ferulic-Acid-Loaded Fibrous Films for Fruit Preservation. Polymers. 2022;14:4947. doi:10.3390/polym14224947. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

27. Mishra B., Upadhyay M., Reddy Adena S., Vasant B., Muthu M. Hydrogels: An introduction to a controlled drug delivery device, synthesis and application in drug delivery and tissue engineering. Austin J. Biomed. Eng. 2017;4:1037. doi:10.1007/s10924-021-02184-5. [CrossRef] [Google Scholar]

28. Wei Y., Zeng Q., Wang M., Huang J., Guo X., Wang L. Near-infrared light-responsive electrochemical protein imprinting biosensor based on a shape memory conducting hydrogel. Biosens. Bioelectron. 2019;131:156–162. doi:10.1016/j.bios.2019.02.015. [PubMed] [CrossRef] [Google Scholar]

29. Pontremoli C., Boffito M., Fiorilli S., Laurano R., Torchio A., Bari A., Tonda-Turo C., Ciardelli G., Vitale-Brovarone C. Hybrid injectable platforms for the in situ delivery of therapeutic ions from mesoporous glasses. Chem. Eng. J. 2018;340:103–113. doi:10.1016/j.cej.2018.01.073. [CrossRef] [Google Scholar]

30. Singh A., Vaishagya K., Verma R.K., Shukla R. Temperature/pH-triggered PNIPAM-based smart nanogel system loaded with anastrozole delivery for application in cancer chemotherapy. Aaps Pharmscitech. 2019;20:213. doi:10.1208/s12249-019-1410-3. [PubMed] [CrossRef] [Google Scholar]

31. Lin X., Miao L., Wang X., Tian H. Design and evaluation of pH-responsive hydrogel for oral delivery of amifostine and study on its radioprotective effects. Colloids Surf. B Biointerfaces. 2020;195:111200. doi:10.1016/j.colsurfb.2020.111200. [PubMed] [CrossRef] [Google Scholar]

32. Spicer C.D. Hydrogel scaffolds for tissue engineering: The importance of polymer choice. Polym. Chem. 2020;11:184–219. doi:10.1039/C9PY01021A. [CrossRef] [Google Scholar]

33. Mannarino M.M., Bassett M., Donahue D.T., Biggins J.F. Novel high-strength thromboresistant poly(vinyl alcohol)-based hydrogel for vascular access applications. J. Biomater. Sci. Polym. Ed. 2020;31:601–621. doi:10.1080/09205063.2019.1706148. [PubMed] [CrossRef] [Google Scholar]

34. Wang M., Hou J., Yu D.-G., Li S., Zhu J., Chen Z. Electrospun tri-layer nanodepots for sustained release of acyclovir. J. Alloys Compd. 2020;846:156471. doi:10.1016/j.jallcom.2020.156471. [CrossRef] [Google Scholar]

35. Wang Y., Yu D.-G., Liu Y., Liu Y.-N. Progress of Electrospun Nanofibrous Carriers for Modifications to Drug Release Profiles. J. Funct. Biomater. 2022;13:289. doi:10.3390/jfb13040289. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

36. Du J., Gao S., Shi P., Fan J., Xu Q., Min Y. Three-dimensional carbonaceous for potassium ion batteries anode to boost rate and cycle life performance. J. Power Sources. 2020;451:227727. doi:10.1016/j.jpowsour.2020.227727. [CrossRef] [Google Scholar]

37. Buckingham M.A., Zhang S., Liu Y., Chen J., Marken F., Aldous L. Thermogalvanic and thermocapacitive behavior of superabsorbent hydrogels for combined low-temperature thermal energy conversion and harvesting. ACS Appl. Energy Mater. 2021;4:11204–11214. doi:10.1021/acsaem.1c02060. [CrossRef] [Google Scholar]

38. Yang Y., Wang H., Liu W., Shi J., Dong G., Zhang H., Li D., Lu G. Polymer salt-derived carbon-based nanomaterials for high-performance hybrid Li-ion capacitors. J. Mater. Sci. 2019;54:7811–7822. doi:10.1007/s10853-019-03423-w. [CrossRef] [Google Scholar]

39. Mendoza D.J., Ayurini M., Raghuwanshi V.S., Simon G.P., Hooper J.F., Garnier G. Synthesis of superabsorbent polyacrylic acid-grafted cellulose nanofibers via silver-promoted decarboxylative radical polymerization. Macromolecules. 2023;56:3497–3506. doi:10.1021/acs.macromol.3c00431. [CrossRef] [Google Scholar]

40. Zhang Y., Wei J., Zhang X., Gao P. Fabrication and swelling properties of a novel superabsorbent composite derived from waste coal gangue. Polym. Polym. Compos. 2023;31:13. doi:10.1177/09673911231182902. [CrossRef] [Google Scholar]

41. Sadeghi M., Gudarzi A., Safari S., Shahsavari H., Sadeghi H. Synthesis of superabsorbent hydrogels consisted of pectin and poly(methacrylonitrile) for drug delivery systems. Asian J. Chem. 2013;25:4847–4850. doi:10.14233/ajchem.2013.14122. [CrossRef] [Google Scholar]

42. de Oliveira M.R., Gonçalves E.P. Addition of polyacrylonitrile superabsorbent polymer in cement mixture with variation in the amount of water. Rev. UniVap. 2022;28:12. doi:10.18066/revistaunivap.v28i57. [CrossRef] [Google Scholar]

43. Ge J., Jia Y., Cheng C., Sun K., Peng Y., Tu Y., Qiang Y., Hua Z., Zheng Z., Ye X., et al. Polydimethylsiloxane-functionalized polyacrylonitrile nanofibrous aerogels for efficient oil absorption and oil/water separation. J. Appl. Polym. Sci. 2021;138:51339. doi:10.1002/app.51339. [CrossRef] [Google Scholar]

44. Ma C., Fan F., Chen M., Li S., Chen Y., Pan Z., Liu R. Preparation of a novel superabsorbent fiber–cement composite and evaluation of its self-healing performance. Cem. Concr. Compos. 2022;133:104713. doi:10.1016/j.cemconcomp.2022.104713. [CrossRef] [Google Scholar]

45. Sun J., Sun G., Zhao X., Liu X., Zhao H., Xu C., Yan L., Jiang X., Cui Y. Ultrafast and efficient removal of Pb(II) from acidic aqueous solution using a novel polyvinyl alcohol superabsorbent. Chemosphere. 2021;282:131032. doi:10.1016/j.chemosphere.2021.131032. [PubMed] [CrossRef] [Google Scholar]

46. Kadhim S.A., Hameed A.M., Rasheed R.T. Synthesis and study of magnesium complexes derived from polyacrylate and polyvinyl alcohol and their applications as superabsorbent polymers. J. Mech. Behav. Mater. 2022;31:462–472. doi:10.1515/jmbm-2022-0053. [CrossRef] [Google Scholar]

47. Sedighim S., Chen Y., Xu C., Mohindra R., Liu H., Agrawal D.K., Thankam F.G. Carboxymethyl cellulose–alginate interpenetrating hydroxy ethyl methacrylate crosslinked polyvinyl alcohol reinforced hybrid hydrogel templates with improved biological performance for cardiac tissue engineering. Biotechnol. Bioeng. 2023;120:819–835. doi:10.1002/bit.28291. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

48. Guo Y., Guo R., Shi X., Lian S., Zhou Q., Chen Y., Liu W., Li W. Synthesis of cellulose-based superabsorbent hydrogel with high salt tolerance for soil conditioning. Int. J. Biol. Macromol. 2022;209:1169–1178. doi:10.1016/j.ijbiomac.2022.04.039. [PubMed] [CrossRef] [Google Scholar]

49. Tian H., Cheng S., Zhen J., Lei Z. Superabsorbent polymer with excellent water/salt absorbency and water retention, and fast swelling properties for preventing soil water evaporation. J. Polym. Environ. 2023;31:812–824. doi:10.1007/s10924-022-02543-w. [CrossRef] [Google Scholar]

50. Gao L., Luo H., Wang Q., Hu G., Xiong Y. Synergistic Effect of Hydrogen Bonds and Chemical Bonds to Construct a Starch-Based Water-Absorbing/Retaining Hydrogel Composite Reinforced with cellulose and poly(ethylene glycol) ACS Omega. 2021;6:35039–35049. doi:10.1021/acsomega.1c05614. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

51. Jayanudin, Lestari R.S.D., Barleany D.R., Pitaloka A.B., Yulvianti M., Prasetyo D., Anggoro D.V., Ruhiatna A. Chitosan-Graft-Poly(acrylic acid) Superabsorbent’s Water Holding in Sandy Soils and Its Application in Agriculture. Polymers. 2022;14:5175. doi:10.3390/polym14235175. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

52. Akkaya R., Akkaya B., Çakıcı G.T. Chitosan–poly(acrylamide-co-maleic acid) composite synthesis, characterization, and investigation of protein adsorption behavior. Polym. Bull. 2023;80:4153–4168. doi:10.1007/s00289-022-04259-2. [CrossRef] [Google Scholar]

53. Barleany D.R., Heriyanto H., Alwan H., Kurniawati V., Muyassaroh A., Erizal E. Effect of starch and chitosan addition on swelling properties of neutralized poly(acrylic acid)-based superabsorbent hydrogels prepared by using γ-irradiation technique. At. Indones. 2022;48:99–106. doi:10.17146/aij.2022.1171. [CrossRef] [Google Scholar]

54. Yao Y., Shen Y., Hu C., Wu H. Superabsorbent fabric: In situ polymerisation of macroporous starch–sodium alginate–polyacrylate hydrogel on fibre surface. Cellulose. 2023;30:7113–7128. doi:10.1007/s10570-023-05317-2. [CrossRef] [Google Scholar]

55. Xiong H., Peng H., Ye X., Kong Y., Wang N., Yang F., Meni B.-H., Lei Z. High salt tolerance hydrogel prepared of hydroxyethyl starch and its ability to increase soil water holding capacity and decrease water evaporation. Soil Tillage Res. 2022;222:105427. doi:10.1016/j.still.2022.105427. [CrossRef] [Google Scholar]

56. Fan X., Zhang R., Sui S., Liu X., Liu J., Shi C., Zhao N., Zhong C., Hu W. Starch-Based superabsorbent hydrogel with high electrolyte retention capability and synergistic interface engineering for long-lifespan flexible zinc−air batteries. Angew. Chem. Int. Ed. 2023;62:e202302640. doi:10.1002/anie.202302640. [PubMed] [CrossRef] [Google Scholar]

57. Jancar J., Skarpa P., Mohsen-Latiff A. Fertilizer technology based on optimized nitrogen release from urea-loaded natural superabsorbent carriers. Soil Use Manag. 2023;39:1583–1599. doi:10.1111/sum.12944. [CrossRef] [Google Scholar]

58. Álvarez-Castillo E., Bengoechea C., Felix M., Guerrero A. Freeze-Drying versus Heat-Drying: Effect on Protein-Based Superabsorbent Material. Processes. 2021;9:1076. doi:10.3390/pr9061076. [CrossRef] [Google Scholar]

59. Zhang W., Guo L., Liu Q., Yang M., Chen J., Lei Z. Preparation and properties of a biodegradability superabsorbent composite based on flax cake protein-g-poly (acrylic acid)/kaolinite. J. Appl. Polym. Sci. 2022;139:51975. doi:10.1002/app.51975. [CrossRef] [Google Scholar]

60. Jahan N., Mahbub S.I., Lee B.-T., Bae S.H. In Vivo and in vitro investigation of a novel gelatin/sodium polyacrylate composite hemostatic sponge for topical bleeding. J. Funct. Biomater. 2023;14:265. doi:10.3390/jfb14050265. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

61. Chen W., Mei E., Xie X. Virus stabilization with enhanced porous superabsorbent polymer (PSAP) beads for diagnostics and surveillance. ACS ES&T Water. 2022;2:2378–2387. doi:10.1021/acsestwater.2c00239. [CrossRef] [Google Scholar]

62. Meng H., Zhang X., Sun S., Tan T., Cao H. Preparation of γ-aminopropyltriethoxysilane cross-linked poly(aspartic acid) superabsorbent hydrogels without organic solvent. J. Biomater. Sci. Polym. Ed. 2016;27:133–143. doi:10.1080/09205063.2015.1112497. [PubMed] [CrossRef] [Google Scholar]

63. Vakili M.R., Rahneshin N. Synthesis and characterization of novel stimuli-responsive hydrogels based on starch and L-aspartic acid. Carbohydr. Polym. 2013;98:1624–1630. doi:10.1016/j.carbpol.2013.08.016. [PubMed] [CrossRef] [Google Scholar]

64. Agnihotri S., Singhal R. Effect of sodium alginate content in acrylic acid/sodium humate/sodium alginate superabsorbent hydrogel on removal capacity of MB and CV dye by adsorption. J. Polym. Environ. 2019;27:372–385. doi:10.1007/s10924-018-1349-6. [CrossRef] [Google Scholar]

65. Snoeck D., Moerkerke B., Mignon A., De Belie N. In-Situ crosslinking of superabsorbent polymers as external curing layer compared to internal curing to mitigate plastic shrinkage. Constr. Build. Mater. 2020;262:120819. doi:10.1016/j.conbuildmat.2020.120819. [CrossRef] [Google Scholar]

66. Nita L.E., Chiriac A.P., Ghilan A., Rusu A.G., Tudorachi N., Timpu D. Alginate enriched with phytic acid for hydrogels preparation. Int. J. Biol. Macromol. 2021;181:561–571. doi:10.1016/j.ijbiomac.2021.03.164. [PubMed] [CrossRef] [Google Scholar]

67. Yarimkaya S., Basan H. Synthesis and Swelling behavior of acrylate-based hydrogels. J. Macromol. Sci. Part A. 2007;44:699–706. doi:10.1080/10601320701351268. [CrossRef] [Google Scholar]

68. Tang Q., Wu J., Lin J., Li Q., Fan S. Two-step synthesis of polyacrylamide/polyacrylate interpenetrating network hydrogels and its swelling/deswelling properties. J. Mater. Sci. 2008;43:5884–5890. doi:10.1007/s10853-008-2857-x. [CrossRef] [Google Scholar]

69. Hu X.Y., Xiao C.F. Study on superabsorbent polyacrylonitrile-based fibre. Indian J. Fibre Text. Res. 2005;30:207–210. [Google Scholar]

70. Bary E.M.A., Fekri A., Soliman Y.A., Harmal A.N. Manufacturing of superabsorbent membranes of PVA and rice husk fibres reinforced with nanosilica for agricultural and horticultural applications. Int. J. Environ. Stud. 2019;76:150–167. doi:10.1080/00207233.2018.1550966. [CrossRef] [Google Scholar]

71. Ballard N., Asua J.M. Radical polymerization of acrylic monomers: An overview. Prog. Polym. Sci. 2018;79:40–60. doi:10.1016/j.progpolymsci.2017.11.002. [CrossRef] [Google Scholar]

72. Sharma K., Kumar V., Kaith B., Kumar V., Som S., Kalia S., Swart H. Synthesis, characterization and water retention study of biodegradable Gum ghatti-poly(acrylic acid–aniline) hydrogels. Polym. Degrad. Stab. 2015;111:20–31. doi:10.1016/j.polymdegradstab.2014.10.012. [CrossRef] [Google Scholar]

73. Athawale V.D., Lele V. Factors influencing absorbent properties of saponified starch-g-(acrylic acid-co-acrylamide) J. Appl. Polym. Sci. 2000;77:2480–2485. doi:10.1002/1097-4628(20000912)77:11<2480::AID-APP17>3.0.CO;2-T. [CrossRef] [Google Scholar]

74. Miyajima T., Matsubara Y., Komatsu H., Miyamoto M., Suzuki K. Development of a superabsorbent polymer using iodine transfer polymerization. Polym. J. 2020;52:365–373. doi:10.1038/s41428-019-0292-2. [CrossRef] [Google Scholar]

75. Baloch F.E., Afzali D., Fathirad F. Design of acrylic acid/nanoclay grafted polysaccharide hydrogels as superabsorbent for controlled release of chlorpyrifos. Appl. Clay Sci. 2021;211:106194. doi:10.1016/j.clay.2021.106194. [CrossRef] [Google Scholar]

76. Raju K.M., Raju M.P., Mohan Y.M. Synthesis and water absorbency of crosslinked superabsorbent polymers. J. Appl. Polym. Sci. 2002;85:1795–1801. doi:10.1002/app.10731. [CrossRef] [Google Scholar]

77. Ma S., Liu M., Chen Z. Preparation and properties of a salt-resistant superabsorbent polymer. J. Appl. Polym. Sci. 2004;93:2532–2541. doi:10.1002/app.20735. [CrossRef] [Google Scholar]

78. Singh J., Dhaliwal A. Synthesis, characterization and swelling behavior of silver nanoparticles containing superabsorbent based on grafted copolymer of polyacrylic acid/Guar gum. Vacuum. 2018;157:51–60. doi:10.1016/j.vacuum.2018.08.017. [CrossRef] [Google Scholar]

79. Kwon Y.-R., Kim J.-S., Kim D.-H. Effective enhancement of water absorbency of itaconic acid based-superabsorbent polymer via tunable surface—Crosslinking. Polymers. 2021;13:2782. doi:10.3390/polym13162782. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

80. Kwon Y.R., Lim S.H., Kim H.C., Kim J.S., Chang Y.W., Choi J., Kim D.H. Superabsorbent polymer with improved permeability and absorption rate using hollow glass microspheres. J. Polym. Sci. 2021;59:462–470. doi:10.1002/pol.20200820. [CrossRef] [Google Scholar]

81. Stahl J.D., Cameron M.D., Haselbach J., Aust S.D. Biodegradation of superabsorbent polymers in soil. Environ. Sci. Pollut. Res. 2000;7:83–88. doi:10.1065/espr199912.014. [PubMed] [CrossRef] [Google Scholar]

82. Hebeish A., Hashem M., El-Hady M.A., Sharaf S. Development of CMC hydrogels loaded with silver nano-particles for medical applications. Carbohydr. Polym. 2013;92:407–413. doi:10.1016/j.carbpol.2012.08.094. [PubMed] [CrossRef] [Google Scholar]

83. Anirudhan T.S., Suchithra P.S., Senan P., Tharun A.R. Kinetic and Equilibrium Profiles of Adsorptive Recovery of thorium(IV) from Aqueous Solutions Using poly(methacrylic acid) Grafted cellulose/bentonite Superabsorbent Composite. Ind. Eng. Chem. Res. 2012;51:4825–4836. doi:10.1021/ie202538q. [CrossRef] [Google Scholar]

84. Liu Y., Zhu Y., Wang Y., Mu B., Wang X., Wang A. Eco-friendly superabsorbent composites based on calcined semico*ke and polydimethylourea phosphate: Synthesis, swelling behavior, degradability and their impact on cabbage growth. Colloids Surfaces A Physicochem. Eng. Asp. 2022;648:129439. doi:10.1016/j.colsurfa.2022.129439. [CrossRef] [Google Scholar]

85. Soleimani F., Sadeghi M., Shasevari H., Soleimani A., Sadeghi H. Effective parameters onto swelling capacity of biosuperabsorbent based on acrylonitrile-sucrose. Asian J. Chem. 2013;25:2259–2261. doi:10.14233/ajchem.2013.13751A. [CrossRef] [Google Scholar]

86. Wang K.Y., Cen R.F., Shu W.W. Preparation and performance of super-absorbent resin using polyacrylonitrile fiber wastes. Adv. Mater. Res. 2015;1120–1121:498–501. doi:10.4028/www.scientific.net/AMR.1120-1121.498. [CrossRef] [Google Scholar]

87. Trivedi J., Chourasia A. Sodium salt of partially carboxymethylated sodium alginate-g-poly(acrylonitrile): I. Photo-induced synthesis, characterization, and alkaline hydrolysis. Gels. 2023;9:410. doi:10.3390/gels9050410. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

88. Bhattacharya S.S., Mishra A., Pal D., Ghosh A.K., Ghosh A., Banerjee S., Sen K.K. Synthesis and Characterization of poly(acrylic acid)/poly(vinyl alcohol)-xanthan gum Interpenetrating Network (IPN) Superabsorbent Polymeric Composites. Polym.-Plast. Technol. Eng. 2012;51:878–884. doi:10.1080/03602559.2012.671421. [CrossRef] [Google Scholar]

89. Oprea M., Voicu S.I. Recent advances in composites based on cellulose derivatives for biomedical applications. Carbohydr. Polym. 2020;247:116683. doi:10.1016/j.carbpol.2020.116683. [PubMed] [CrossRef] [Google Scholar]

90. Chen Y., Zhang Y., Wang F., Meng W., Yang X., Li P., Jiang J., Tan H., Zheng Y. Preparation of porous carboxymethyl chitosan grafted poly (acrylic acid) superabsorbent by solvent precipitation and its application as a hemostatic wound dressing. Mater. Sci. Eng. C Mater. Biol. Appl. 2016;63:18–29. doi:10.1016/j.msec.2016.02.048. [PubMed] [CrossRef] [Google Scholar]

91. Dragan E.S., Apopei D.F. Synthesis and swelling behavior of pH-sensitive semi-interpenetrating polymer network composite hydrogels based on native and modified potatoes starch as potential sorbent for cationic dyes. Chem. Eng. J. 2011;178:252–263. doi:10.1016/j.cej.2011.10.066. [CrossRef] [Google Scholar]

92. Sharma S., Dua A., Malik A. Polyaspartic acid based superabsorbent polymers. Eur. Polym. J. 2014;59:363–376. doi:10.1016/j.eurpolymj.2014.07.043. [CrossRef] [Google Scholar]

93. Zhao Y., Kang J., Tan T. Salt-, pH- and temperature-responsive semi-interpenetrating polymer network hydrogel based on poly(aspartic acid) and poly(acrylic acid) Polymer. 2006;47:7702–7710. doi:10.1016/j.polymer.2006.08.056. [CrossRef] [Google Scholar]

94. Zhang Z., Abidi N., Lucia L., Chabi S., Denny C.T., Parajuli P., Rumi S.S. Cellulose/nanocellulose superabsorbent hydrogels as a sustainable platform for materials applications: A mini-review and perspective. Carbohydr. Polym. 2023;299:120140. doi:10.1016/j.carbpol.2022.120140. [PubMed] [CrossRef] [Google Scholar]

95. Demitri C., Del Sole R., Scalera F., Sannino A., Vasapollo G., Maffezzoli A., Ambrosio L., Nicolais L. Novel superabsorbent cellulose-based hydrogels crosslinked with citric acid. J. Appl. Polym. Sci. 2008;110:2453–2460. doi:10.1002/app.28660. [CrossRef] [Google Scholar]

96. Hazmi A.T., Ahmad F.B., Akmal M.M., Ralib A.A.M., Ali F.B. Fungal chitosan for potential application in piezoelectric energy harvesting: Review on experimental procedure of chitosan extraction. Alex. Eng. J. 2023;67:105–116. doi:10.1016/j.aej.2022.08.020. [CrossRef] [Google Scholar]

97. Jolayemi O.L., Malik A.H., Ekblad T., Fredlund K., Olsson M.E., Johansson E. Protein-based biostimulants to enhance plant growth—State-of-the-art and future direction with sugar beet as an example. Agronomy. 2022;12:3211. doi:10.3390/agronomy12123211. [CrossRef] [Google Scholar]

98. Sajilata M., Singhal R.S., Kulkarni P.R. Resistant starch–A review. Compr. Rev. Food Sci. Food Saf. 2006;5:1–17. doi:10.1111/j.1541-4337.2006.tb00076.x. [PubMed] [CrossRef] [Google Scholar]

99. Tester R.F., Karkalas J., Qi X. Starch—Composition, fine structure and architecture. J. Cereal Sci. 2004;39:151–165. doi:10.1016/j.jcs.2003.12.001. [CrossRef] [Google Scholar]

100. Primarini D., Ohta Y. Some Enzyme Properties of Raw Starch Digesting Amylases from Streptomyces sp. No. 4. Starch. 2000;52:28–32. doi:10.1002/(SICI)1521-379X(200001)52:1<28::AID-STAR28>3.0.CO;2-J. [CrossRef] [Google Scholar]

101. Harish Prashanth K.V., Tharanathan R.N. Chitin/chitosan: Modifications and their unlimited application potential—An overview. Trends Food Sci. Technol. 2007;18:117–131. doi:10.1016/j.tifs.2006.10.022. [CrossRef] [Google Scholar]

102. Tang W.J., Fernandez J.G., Sohn J.J., Amemiya C.T. Chitin is endogenously produced in vertebrates. Curr. Biol. 2015;25:897–900. doi:10.1016/j.cub.2015.01.058. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

103. Chen Y., Liu Y.-F., Tan H.-M., Jiang J.-X. Synthesis and characterization of a novel superabsorbent polymer of N,O-carboxymethyl chitosan graft copolymerized with vinyl monomers. Carbohydr. Polym. 2009;75:287–292. doi:10.1016/j.carbpol.2008.07.022. [CrossRef] [Google Scholar]

104. Kean T., Thanou M. Chitin and chitosan: Sources, production and medical applications. In: Williams P., editor. Renewable Resources for Functional Polymers and Biomaterials. The Royal Society of Chemistry; London, UK: 2011. pp. 292–318. Chapter 10. [CrossRef] [Google Scholar]

105. Dash M., Chiellini F., Ottenbrite R.M., Chiellini E. Chitosan—A versatile semi-synthetic polymer in biomedical applications. Prog. Polym. Sci. 2011;36:981–1014. doi:10.1016/j.progpolymsci.2011.02.001. [CrossRef] [Google Scholar]

106. Ma Z., Li Q., Yue Q., Gao B., Xu X., Zhong Q. Synthesis and characterization of a novel super-absorbent based on wheat straw. Bioresour. Technol. 2011;102:2853–2858. doi:10.1016/j.biortech.2010.10.072. [PubMed] [CrossRef] [Google Scholar]

107. Jia Z., Shen D., Xu W. Synthesis and antibacterial activities of quaternary ammonium salt of chitosan. Carbohydr. Res. 2001;333:1–6. doi:10.1016/S0008-6215(01)00112-4. [PubMed] [CrossRef] [Google Scholar]

108. Johansson E., Malik A.H., Hussain A., Rasheed F., Newson W.R., Plivelic T., Hedenqvist M.S., Gällstedt M., Kuktaite R. Wheat gluten polymer structures: The impact of genotype, environment, and processing on their functionality in various applications. Cereal Chem. 2013;90:367–376. doi:10.1094/CCHEM-08-12-0105-FI. [CrossRef] [Google Scholar]

109. Wang Y., Li X., Zhang Y., Wang L., Yang Z. A supramolecular hydrogel to boost the production of antibodies for phosphorylated proteins. Chem. Commun. 2019;55:12388–12391. doi:10.1039/C9CC05633E. [PubMed] [CrossRef] [Google Scholar]

110. Jonker A.M., Löwik D.W.P.M., van Hest J.C.M. Peptide- and protein-based hydrogels. Chem. Mater. 2012;24:759–773. doi:10.1021/cm202640w. [CrossRef] [Google Scholar]

111. Min S.K., Kim J.H., Chung D.J. Swelling behavior of biodegradable crosslinked gel based on poly(aspartic acid) and PEG-diepoxide. [(accessed on 4 February 2024)];Korea Polym. J. 2001 9:143–149. Available online: https://api.semanticscholar.org/CorpusID:101405488 [Google Scholar]

112. Kunioka M. Biodegradable water absorbent synthesized from Bacterial poly(amino acid)s. Macromol. Biosci. 2004;4:324–329. doi:10.1002/mabi.200300121. [PubMed] [CrossRef] [Google Scholar]

113. Lee K.Y., Mooney D.J. Alginate: Properties and biomedical applications. Prog. Polym. Sci. 2012;37:106–126. doi:10.1016/j.progpolymsci.2011.06.003. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

114. Qin Y. The gel swelling properties of alginate fibers and their applications in wound management. Polym. Adv. Technol. 2008;19:6–14. doi:10.1002/pat.960. [CrossRef] [Google Scholar]

115. Manjula B., Varaprasad K., Sadiku R., Raju K.M. Preparation and characterization of sodium alginate–based hydrogels and their in vitro release studies. Adv. Polym. Technol. 2013;32:21340. doi:10.1002/adv.21340. [CrossRef] [Google Scholar]

116. Hua S., Wang A. Synthesis, characterization and swelling behaviors of sodium alginate-g-poly(acrylic acid)/sodium humate superabsorbent. Carbohydr. Polym. 2009;75:79–84. doi:10.1016/j.carbpol.2008.06.013. [CrossRef] [Google Scholar]

117. Phang Y.-N., Chee S.-Y., Lee C.-O., Teh Y.-L. Thermal and microbial degradation of alginate-based superabsorbent polymer. Polym. Degrad. Stab. 2011;96:1653–1661. doi:10.1016/j.polymdegradstab.2011.06.010. [CrossRef] [Google Scholar]

118. Sang Y., Zhao J.R. Reduction of water absorption capacity of cellulose fibres for its application in cementitious materials. J. Compos. Mater. 2015;49:2757–2763. doi:10.1177/0021998314554123. [CrossRef] [Google Scholar]

119. Meimoun J., Wiatz V., Saint-Loup R., Parcq J., Favrelle A., Bonnet F., Zinck P. Modification of starch by graft copolymerization. Starch. 2018;70:1600351. doi:10.1002/star.201600351. [CrossRef] [Google Scholar]

120. Sawut A., Yimit M., Sun W., Nurulla I. Photopolymerisation and characterization of maleylatedcellulose-g-poly(acrylic acid) superabsorbent polymer. Carbohydr. Polym. 2014;101:231–239. doi:10.1016/j.carbpol.2013.09.054. [PubMed] [CrossRef] [Google Scholar]

121. Narayanan A., Dhamodharan R. Super water-absorbing new material from chitosan, EDTA and urea. Carbohydr. Polym. 2015;134:337–343. doi:10.1016/j.carbpol.2015.08.010. [PubMed] [CrossRef] [Google Scholar]

122. Athawale V., Lele V. Graft copolymerization onto starch. II. Grafting of acrylic acid and preparation of it’s hydrogels. Carbohydr. Polym. 1998;35:21–27. doi:10.1016/S0144-8617(97)00138-0. [CrossRef] [Google Scholar]

123. Qiao D., Liu H., Yu L., Bao X., Simon G.P., Petinakis E., Chen L. Preparation and characterization of slow-release fertilizer encapsulated by starch-based superabsorbent polymer. Carbohydr. Polym. 2016;147:146–154. doi:10.1016/j.carbpol.2016.04.010. [PubMed] [CrossRef] [Google Scholar]

124. Narmani A., Jafari S.M. Chitosan-based nanodelivery systems for cancer therapy: Recent advances. Carbohydr. Polym. 2021;272:118464. doi:10.1016/j.carbpol.2021.118464. [PubMed] [CrossRef] [Google Scholar]

125. Nge T.T., Hori N., Takemura A., Ono H. Swelling behavior of chitosan/poly(acrylic acid) complex. J. Appl. Polym. Sci. 2004;92:2930–2940. doi:10.1002/app.20252. [CrossRef] [Google Scholar]

126. Wang X., Lou T., Zhao W., Song G. Preparation of pure chitosan film using ternary solvents and its super absorbency. Carbohydr. Polym. 2016;153:253–257. doi:10.1016/j.carbpol.2016.07.081. [PubMed] [CrossRef] [Google Scholar]

127. Raju M.P., Raju K.M. Design and synthesis of superabsorbent polymers. J. Appl. Polym. Sci. 2001;80:2635–2639. doi:10.1002/app.1376. [CrossRef] [Google Scholar]

128. Tang H., Chen H., Duan B., Lu A., Zhang L. Swelling behaviors of superabsorbent chitin/carboxymethylcellulose hydrogels. J. Mater. Sci. 2014;49:2235–2242. doi:10.1007/s10853-013-7918-0. [CrossRef] [Google Scholar]

129. Hanani Z.N., Roos Y., Kerry J. Use and application of gelatin as potential biodegradable packaging materials for food products. Int. J. Biol. Macromol. 2014;71:94–102. doi:10.1016/j.ijbiomac.2014.04.027. [PubMed] [CrossRef] [Google Scholar]

130. Daniele M.A., Adams A.A., Naciri J., North S.H., Ligler F.S. Interpenetrating networks based on gelatin methacrylamide and PEG formed using concurrent thiol click chemistries for hydrogel tissue engineering scaffolds. Biomaterials. 2014;35:1845–1856. doi:10.1016/j.biomaterials.2013.11.009. [PubMed] [CrossRef] [Google Scholar]

131. Bagheri Marandi G., Beheshti Rouzbahani G., Kurdtabar M. Synthesis and swelling behavior of gelatin-based hydrogel nanocomposites. [(accessed on 4 February 2024)];J. Appl. Chem. Res. 2014 8:63–80. Available online: https://api.semanticscholar.org/CorpusID:4984958 [Google Scholar]

132. Rathna G.V.N. Hydrogels of modified ethylenediaminetetraacetic dianhydride gelatin conjugated with poly(ethylene glycol) dialdehyde as a drug-release matrix. J. Appl. Polym. Sci. 2004;91:1059–1067. doi:10.1002/app.13205. [CrossRef] [Google Scholar]

133. Pourjavadi A., Salimi H. New Protein-based hydrogel with superabsorbing properties: Effect of monomer ratio on swelling behavior and kinetics. Ind. Eng. Chem. Res. 2008;47:9206–9213. doi:10.1021/ie8002478. [CrossRef] [Google Scholar]

134. Song W., Zhang Y., Tran C.H., Choi H.K., Yu D.-G., Kim I. Porous organic polymers with defined morphologies: Synthesis, assembly, and emerging applications. Prog. Polym. Sci. 2023;142:101691. doi:10.1016/j.progpolymsci.2023.101691. [CrossRef] [Google Scholar]

135. Zhou J., Yi T., Zhang Z., Yu D.-G., Liu P., Wang L., Zhu Y. Electrospun Janus core (ethyl cellulose//polyethylene oxide) @ shell (hydroxypropyl methyl cellulose acetate succinate) hybrids for an enhanced colon-targeted prolonged drug absorbance. Adv. Compos. Hybrid Mater. 2023;6:189. doi:10.1007/s42114-023-00766-6. [CrossRef] [Google Scholar]

136. Yu D.-G., Zhou J. How can Electrospinning Further Service Well for Pharmaceutical Researches? J. Pharm. Sci. 2023;112:2719–2723. doi:10.1016/j.xphs.2023.08.017. [PubMed] [CrossRef] [Google Scholar]

137. Fujita S., Tazawa T., Kono H. Preparation and enzyme degradability of spherical and water-absorbent gels from sodium carboxymethyl cellulose. Gels. 2022;8:321. doi:10.3390/gels8050321. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

138. Maijan P., Chantarak S. Synthesis and characterization of highly durable and reusable superabsorbent core–shell particles. Polym. Eng. Sci. 2020;60:306–313. doi:10.1002/pen.25284. [CrossRef] [Google Scholar]

139. Yang F., Zhang M., Yang H., Yan W., Jiang F. Effect of aggregate size on liquid absorption characteristics of konjac glucomannan superabsorbent. J. Appl. Polym. Sci. 2017;134:45416. doi:10.1002/app.45416. [CrossRef] [Google Scholar]

140. Sand A., Shin N.-J., Nam H.-G., Kwark Y.-J. Effects of Reaction Parameters on water Absorption of poly(itaconic acid) Superabsorbent Particles Synthesized by Inverse Suspension Polymerization. Fibers Polym. 2021;22:898–903. doi:10.1007/s12221-021-0459-2. [CrossRef] [Google Scholar]

141. Soly S.J., Nosrati A., Skinner W., Addai-Mensah J. Superabsorbent-mediated dewaterability of fine hydrophobic sulphide mineral slurries. Sep. Sci. Technol. 2019;54:3055–3069. doi:10.1080/01496395.2019.1565771. [CrossRef] [Google Scholar]

142. Fernández P., Kraemer F.B., Sabatté L., Guiroy J., Boem F.G. Superabsorbent polyacrylamide Effects on Hydrophysical Soil Properties and Plant Biomass in a Sandy Loam soil. Commun. Soil Sci. Plant Anal. 2022;53:2892–2906. doi:10.1080/00103624.2022.2096233. [CrossRef] [Google Scholar]

143. Lee K.M., Min J.H., Oh S., Lee H., Koh W.-G. Preparation and characterization of superabsorbent polymers (SAPs) surface-crosslinked with polycations. React. Funct. Polym. 2020;157:104774. doi:10.1016/j.reactfunctpolym.2020.104774. [CrossRef] [Google Scholar]

144. Ramazani-Harandi M., Zohuriaan-Mehr M., Yousefi A., Ershad-Langroudi A., Kabiri K. Rheological determination of the swollen gel strength of superabsorbent polymer hydrogels. Polym. Test. 2006;25:470–474. doi:10.1016/j.polymertesting.2006.01.011. [CrossRef] [Google Scholar]

145. Kim Y.-J., Yoon K.-J., Ko S.-W. Preparation and properties of alginate superabsorbent filament fibers crosslinked with glutaraldehyde. J. Appl. Polym. Sci. 2000;78:1797–1804. doi:10.1002/1097-4628(20001205)78:10<1797::AID-APP110>3.0.CO;2-M. [CrossRef] [Google Scholar]

146. Petroudy S.R.D., Kahagh S.A., Vatankhah E. Environmentally friendly superabsorbent fibers based on electrospun cellulose nanofibers extracted from wheat straw. Carbohydr. Polym. 2021;251:117087. doi:10.1016/j.carbpol.2020.117087. [PubMed] [CrossRef] [Google Scholar]

147. Angel N., Li S., Yan F., Kong L. Recent advances in electrospinning of nanofibers from bio-based carbohydrate polymers and their applications. Trends Food Sci. Technol. 2022;120:308–324. doi:10.1016/j.tifs.2022.01.003. [CrossRef] [Google Scholar]

148. Yu D.-G., Zhao P. The Key Elements for Biomolecules to Biomaterials and to Bioapplications. Biomolecules. 2022;12:1234. doi:10.3390/biom12091234. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

149. Song W., Tang Y., Qian C., Kim B.J., Liao Y., Yu D.-G. Electrospinning spinneret: A bridge between the visible world and the invisible nanostructures. Innovation. 2023;4:100381. doi:10.1016/j.xinn.2023.100381. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

150. Chen F.M., Zhu X.Z., Yang H.X. Effect of the pore fractal dimensions on absorption ability in superabsorbent fibers. Appl. Mech. Mater. 2013;345:205–208. doi:10.4028/www.scientific.net/AMM.345.205. [CrossRef] [Google Scholar]

151. Vasilyev G., Vilensky R., Zussman E. The ternary system amylose-amylopectin-formic acid as precursor for electrospun fibers with tunable mechanical properties. Carbohydr. Polym. 2019;214:186–194. doi:10.1016/j.carbpol.2019.03.047. [PubMed] [CrossRef] [Google Scholar]

152. Güler B., Çallioğlu F.C. Comparative analysis of superabsorbent properties of PVP and PAA nanofibres. Ind. Textila. 2021;72:460–466. doi:10.35530/IT.072.04.1806. [CrossRef] [Google Scholar]

153. Liu W., Lin H., Wang J., Han Q., Liu F. Polytetrafluoroethylene (PTFE) hollow fibers modified by hydrophilic crosslinking network (HCN) for robust resistance to fouling and harsh chemical cleaning. J. Membr. Sci. 2021;630:119301. doi:10.1016/j.memsci.2021.119301. [CrossRef] [Google Scholar]

154. Jia E., Mou H., Liu Z., Wang J., Zeng L., Yang X., Liu P. Surface Hydrophilic Modification of Polypropylene Fibers and Their Application in Fiber-Reinforced Cement-Based Materials. J. Macromol. Sci. Part B Phys. 2020;60:286–298. doi:10.1080/00222348.2020.1846953. [CrossRef] [Google Scholar]

155. Lu L., Yuan S., Wang J., Shen Y., Deng S., Xie L., Yang Q. The formation mechanism of hydrogels. Curr. Stem Cell Res. Ther. 2018;13:490–496. doi:10.2174/1574888X12666170612102706. [PubMed] [CrossRef] [Google Scholar]

156. Zhang W., Liu Q., Guo L., Wang P., Liu S., Chen J., Lei Z. White Cabbage (Brassica oleracea L.) waste, as biowaste for the preparation of novel superabsorbent polymer gel. J. Environ. Chem. Eng. 2021;9:106689. doi:10.1016/j.jece.2021.106689. [CrossRef] [Google Scholar]

157. Zhai N., Wang B. Preparation of fast-swelling porous superabsorbent hydrogels with high saline water absorbency under pressure by foaming and post surface crosslinking. Sci. Rep. 2023;13:13815. doi:10.1038/s41598-023-40563-1. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

158. Olad A., Doustdar F., Gharekhani H. Fabrication and characterization of a starch-based superabsorbent hydrogel composite reinforced with cellulose nanocrystals from potato peel waste. Colloids Surfaces A Physicochem. Eng. Asp. 2020;601:124962. doi:10.1016/j.colsurfa.2020.124962. [CrossRef] [Google Scholar]

159. Abdul Khalil H.P.S., Adnan A., Yahya E.B., Olaiya N., Safrida S., Hossain M.S., Balakrishnan V., Gopakumar D.A., Abdullah C., Oyekanmi A., et al. A review on plant cellulose nanofibre-based aerogels for biomedical applications. Polymers. 2020;12:1759. doi:10.3390/polym12081759. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

160. De Belie N., Gruyaert E., Al-Tabbaa A., Antonaci P., Baera C., Bajare D., Darquennes A., Davies R., Ferrara L., Jefferson T., et al. A review of self-healing concrete for damage management of structures. Adv. Mater. Interfaces. 2018;5:1800074. doi:10.1002/admi.201800074. [CrossRef] [Google Scholar]

161. Liu J., Wang M., Liu N., Teng L., Wang Y., Chen Z., Shi C. Development of ultra-fine SAP powder for lower-shrinkage and higher-strength cement pastes made with ultra-low water-to-binder ratio. Compos. Part B Eng. 2023;262:110810. doi:10.1016/j.compositesb.2023.110810. [CrossRef] [Google Scholar]

162. Feng D., Bai B., Wang H., Suo Y. Novel fabrication of PAA/PVA/Yeast superabsorbent with interpenetrating polymer network for pH-dependent selective adsorption of dyes. J. Polym. Environ. 2018;26:567–588. doi:10.1007/s10924-017-0972-y. [CrossRef] [Google Scholar]

163. Zhang Z., Abidi N., Lucia L. Smart superabsorbent alginate/carboxymethyl chitosan composite hydrogel beads as efficient biosorbents for methylene blue dye removal. J. Mater. Sci. Technol. 2023;159:81–90. doi:10.1016/j.jmst.2023.02.045. [CrossRef] [Google Scholar]

164. Zhang C., Meza J.V.G., Zhou K., Liu J., Song S., Zhang M., Meng D., Chen J., Xia L., Xiheng H. Superabsorbent polymer used for saline-alkali soil water retention. J. Taiwan Inst. Chem. Eng. 2023;145:104830. doi:10.1016/j.jtice.2023.104830. [CrossRef] [Google Scholar]

165. El Idrissi A., Dardari O., Metomo F.N.N.N., Essamlali Y., Akil A., Amadine O., Aboulhrouz S., Zahouily M. Effect of sodium alginate-based superabsorbent hydrogel on tomato growth under different water deficit conditions. Int. J. Biol. Macromol. 2023;253:127229. doi:10.1016/j.ijbiomac.2023.127229. [PubMed] [CrossRef] [Google Scholar]

166. Li J., Zhu Y., Liu M., Liu Z., Zhou T., Liu Y., Cheng D. Network interpenetrating slow-release nitrogen fertilizer based on carrageenan and urea: A new low-cost water and fertilizer regulation carrier. Int. J. Biol. Macromol. 2023;242:124858. doi:10.1016/j.ijbiomac.2023.124858. [PubMed] [CrossRef] [Google Scholar]

167. Narayanaswamy R., Torchilin V.P. Hydrogels and their applications in targeted drug delivery. Molecules. 2019;24:603. doi:10.3390/molecules24030603. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

168. Vashist A., Vashist A., Gupta Y.K., Ahmad S. Recent advances in hydrogel based drug delivery systems for the human body. J. Mater. Chem. B. 2014;2:147–166. doi:10.1039/C3TB21016B. [PubMed] [CrossRef] [Google Scholar]

169. Wang Y., Liu L., Zhu Y., Wang L., Yu D.-G., Liu L.-Y. Tri-Layer Core–Shell Fibers from Coaxial Electrospinning for a Modified Release of Metronidazole. Pharmaceutics. 2023;15:2561. doi:10.3390/pharmaceutics15112561. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

170. Hosseinzadeh S., Hosseinzadeh H., Pashaei S. Fabrication of nanocellulose loaded poly(AA-co-HEMA) hydrogels for ceftriaxone controlled delivery and crystal violet adsorption. Polym. Compos. 2019;40:E559–E569. doi:10.1002/pc.24875. [CrossRef] [Google Scholar]

171. Shin Y., Kim D., Hu Y., Kim Y., Hong I.K., Kim M.S., Jung S. pH-responsive succinoglycan-carboxymethyl cellulose hydrogels with highly improved mechanical strength for controlled drug delivery systems. Polymers. 2021;13:3197. doi:10.3390/polym13183197. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

172. Bakravi A., Ahamadian Y., Hashemi H., Namazi H. Synthesis of gelatin-based biodegradable hydrogel nanocomposite and their application as drug delivery agent. Adv. Polym. Technol. 2018;37:2625–2635. doi:10.1002/adv.21938. [CrossRef] [Google Scholar]

173. Kapahi H., Khan N.M., Bhardwaj A., Mishra N. Implication of nanofibers in oral drug delivery. Curr. Pharm. Des. 2015;21:2021–2036. doi:10.2174/1381612821666150302153306. [PubMed] [CrossRef] [Google Scholar]

174. Zhou J., Dai Y., Fu J., Yan C., Yu D.-G., Yi T. Dual-Step Controlled Release of Berberine Hydrochloride from the Trans-Scale Hybrids of Nanofibers and Microparticles. Biomolecules. 2023;13:1011. doi:10.3390/biom13061011. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

175. Zhou J., Wang L., Gong W., Wang B., Yu D.-G., Zhu Y. Integrating Chinese Herbs and Western Medicine for New Wound Dressings through Handheld Electrospinning. Biomedicines. 2023;11:2146. doi:10.3390/biomedicines11082146. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

176. Schneider A., Wang X., Kaplan D., Garlick J., Egles C. Biofunctionalized electrospun silk mats as a topical bioactive dressing for accelerated wound healing. Acta Biomater. 2009;5:2570–2578. doi:10.1016/j.actbio.2008.12.013. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

177. Wu S., Liu J., Cai J., Zhao J., Duan B., Chen S. Combining electrospinning with hot drawing process to fabricate high performance poly (L-lactic acid) nanofiber yarns for advanced nanostructured bio-textiles. Biofabrication. 2021;13:045018. doi:10.1088/1758-5090/ac2209. [PubMed] [CrossRef] [Google Scholar]

178. Gao C., Zhang L., Wang J., Jin M., Tang Q., Chen Z., Cheng Y., Yang R., Zhao G. Electrospun nanofibers promote wound healing: Theories, techniques, and perspectives. J. Mater. Chem. B. 2021;9:3106–3130. doi:10.1039/D1TB00067E. [PubMed] [CrossRef] [Google Scholar]

179. Memic A., Abudula T., Mohammed H.S., Joshi Navare K., Colombani T., Bencherif S.A. Latest progress in electrospun nanofibers for wound healing applications. ACS Appl. Bio Mater. 2019;2:952–969. doi:10.1021/acsabm.8b00637. [PubMed] [CrossRef] [Google Scholar]

180. Liu Y., Li T., Han Y., Li F., Liu Y. Recent development of electrospun wound dressing. Curr. Opin. Biomed. Eng. 2021;17:100247. doi:10.1016/j.cobme.2020.100247. [CrossRef] [Google Scholar]

181. Abrigo M., McArthur S.L., Kingshott P. Electrospun nanofibers as dressings for chronic wound care: Advances, challenges, and future prospects. Macromol. Biosci. 2014;14:772–792. doi:10.1002/mabi.201300561. [PubMed] [CrossRef] [Google Scholar]

182. Gao W., Sun L., Fu X., Lin Z., Xie W., Zhang W., Zhao F., Chen X. Enhanced diabetic wound healing by electrospun core–sheath fibers loaded with dimethyloxalylglycine. J. Mater. Chem. B. 2018;6:277–288. doi:10.1039/C7TB02342A. [PubMed] [CrossRef] [Google Scholar]

183. Choi J.S., Leong K.W., Yoo H.S. In vivo wound healing of diabetic ulcers using electrospun nanofibers immobilized with human epidermal growth factor (EGF) Biomaterials. 2008;29:587–596. doi:10.1016/j.biomaterials.2007.10.012. [PubMed] [CrossRef] [Google Scholar]

184. Lalani R., Liu L. Electrospun Zwitterionic poly(sulfobetaine methacrylate) for nonadherent, superabsorbent, and antimicrobial wound dressing applications. Biomacromolecules. 2012;13:1853–1863. doi:10.1021/bm300345e. [PubMed] [CrossRef] [Google Scholar]

185. Gaydhane M.K., Kanuganti J.S., Sharma C.S. Honey and curcumin loaded multilayered polyvinylalcohol/cellulose acetate electrospun nanofibrous mat for wound healing. J. Mater. Res. 2020;35:600–609. doi:10.1557/jmr.2020.52. [CrossRef] [Google Scholar]

186. Varshney N., Sahi A.K., Poddar S., Vishwakarma N.K., Kavimandan G., Prakash A., Mahto S.K. Freeze–thaw-induced physically cross-linked superabsorbent polyvinyl alcohol/soy protein isolate hydrogels for skin wound dressing: In Vitro and in vivo characterization. ACS Appl. Mater. Interfaces. 2022;14:14033–14048. doi:10.1021/acsami.1c23024. [PubMed] [CrossRef] [Google Scholar]

187. Yu D.-G., Huang C. Electrospun Biomolecule-Based Drug Delivery Systems. Biomolecules. 2023;13:1152. doi:10.3390/biom13071152. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

188. Wiegand C., Abel M., Ruth P., Hipler U.C. Superabsorbent polymer-containing wound dressings have a beneficial effect on wound healing by reducing PMN elastase concentration and inhibiting microbial growth. J. Mater. Sci. Mater. Med. 2011;22:2583–2590. doi:10.1007/s10856-011-4423-3. [PubMed] [CrossRef] [Google Scholar]

189. Tarlton J.F., Munro H.S. Use of modified superabsorbent polymer dressings for protease modulation in improved chronic wound care. [(accessed on 4 February 2024)];Wounds. 2013 25:51–57. Available online: https://pubmed.ncbi.nlm.nih.gov/25867807/ [PubMed] [Google Scholar]

190. Cipriano B.H., Banik S.J., Sharma R., Rumore D., Hwang W., Briber R.M., Raghavan S.R. Superabsorbent hydrogels that are robust and highly stretchable. Macromolecules. 2014;47:4445–4452. doi:10.1021/ma500882n. [CrossRef] [Google Scholar]

191. Zhu J., Marchant R.E. Design properties of hydrogel tissue-engineering scaffolds. Expert Rev. Med. Devices. 2011;8:607–626. doi:10.1586/erd.11.27. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

192. Garg T., Singh O., Arora S., Murthy R.S.R. Scaffold: A novel carrier for cell and drug delivery. Crit. Rev. Ther. Drug Carr. Syst. 2012;29:1–63. doi:10.1615/CritRevTherDrugCarrierSyst.v29.i1.10. [PubMed] [CrossRef] [Google Scholar]

193. Wojcik M., Kazimierczak P., Benko A., Palka K., Vivcharenko V., Przekora A. Superabsorbent curdlan-based foam dressings with typical hydrocolloids properties for highly exuding wound management. Mater. Sci. Eng. C Mater. Biol. Appl. 2021;124:112068. doi:10.1016/j.msec.2021.112068. [PubMed] [CrossRef] [Google Scholar]

194. Chen W., Ma J., Zhu L., Morsi Y., Ei-Hamshary H.A., Al-Deyab S.S., Mo X. Superelastic, superabsorbent and 3D nanofiber-assembled scaffold for tissue engineering. Colloids Surfaces B Biointerfaces. 2016;142:165–172. doi:10.1016/j.colsurfb.2016.02.050. [PubMed] [CrossRef] [Google Scholar]

195. Yang X., Yang D., Zhu X., Nie J., Ma G. Electrospun and photocrosslinked gelatin/dextran–maleic anhydride composite fibers for tissue engineering. Eur. Polym. J. 2019;113:142–147. doi:10.1016/j.eurpolymj.2019.01.059. [CrossRef] [Google Scholar]

196. Sartore L., Pandini S., Baldi F., Bignotti F., Di Landro L. Biocomposites based on poly(lactic acid) and superabsorbent sodium polyacrylate. J. Appl. Polym. Sci. 2017;134:45655. doi:10.1002/app.45655. [CrossRef] [Google Scholar]

197. Mahmoodzadeh A., Moghaddas J., Jarolmasjed S., Kalan A.E., Edalati M., Salehi R. Biodegradable cellulose-based superabsorbent as potent hemostatic agent. Chem. Eng. J. 2021;418:129252. doi:10.1016/j.cej.2021.129252. [CrossRef] [Google Scholar]

198. Chen W., Chen S., Morsi Y., El-Hamshary H., El-Newhy M., Fan C., Mo X. Superabsorbent 3D scaffold based on electrospun nanofibers for cartilage tissue engineering. ACS Appl. Mater. Interfaces. 2016;8:24415–24425. doi:10.1021/acsami.6b06825. [PubMed] [CrossRef] [Google Scholar]

199. Rnjak-Kovacina J., Weiss A.S. Increasing the pore size of electrospun scaffolds. Tissue Eng. Part B Rev. 2011;17:365–372. doi:10.1089/ten.teb.2011.0235. [PubMed] [CrossRef] [Google Scholar]

200. Chen S., Wang H., McCarthy A., Yan Z., Kim H.J., Carlson M.A., Xia Y., Xie J. Three-dimensional objects consisting of hierarchically assembled nanofibers with controlled alignments for regenerative medicine. Nano Lett. 2019;19:2059–2065. doi:10.1021/acs.nanolett.9b00217. [PubMed] [CrossRef] [Google Scholar]

201. Fei J., Tang T., Zhou L., He H., Ma M., Shi Y., Chen S., Wang X. High-Toughness and Biodegradable Superabsorbent Hydrogels Based on Dual Functional Crosslinkers. ACS Appl. Polym. Mater. 2023;5:3686–3697. doi:10.1021/acsapm.3c00348. [CrossRef] [Google Scholar]

202. Duan H., Chen H., Qi C., Lv F., Wang J., Liu Y., Liu Z., Liu Y. A novel electrospun nanofiber system with PEGylated pacl*taxel nanocrystals enhancing the transmucus permeability and in situ retention for an efficient cervicovagin*l cancer therapy. Int. J. Pharm. 2024;650:123660. doi:10.1016/j.ijpharm.2023.123660. [PubMed] [CrossRef] [Google Scholar]

203. Kang S., Hou S., Chen X., Yu D.-G., Wang L., Li X., Williams G.R. Energy-Saving Electrospinning with a Concentric Teflon-Core Rod Spinneret to Create Medicated Nanofibers. Polymers. 2020;12:2421. doi:10.3390/polym12102421. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

204. Chen S., Zhou J., Fang B., Ying Y., Yu D., He H. Three EHDA Processes from a Detachable Spinneret for Fabricating Drug Fast Dissolution Composites. Macromol. Mater. Eng. 2023:2300361. doi:10.1002/mame.202300361. [CrossRef] [Google Scholar]

205. Chen X., Liu Y., Liu P. Electrospun Core–Sheath Nanofibers with a Cellulose Acetate Coating for the Synergistic Release of Zinc Ion and Drugs. Mol. Pharm. 2023;21:173–182. doi:10.1021/acs.molpharmaceut.3c00703. [PubMed] [CrossRef] [Google Scholar]

206. Qian C., Liu Y., Chen S., Zhang C., Chen X., Liu Y., Liu P. Electrospun core–sheath PCL nanofibers loaded with nHA and simvastatin and their potential bone regeneration applications. Front. Bioeng. Biotechnol. 2023;11:1205252. doi:10.3389/fbioe.2023.1205252. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

207. Cao X., Chen W., Zhao P., Yang Y., Yu D.-G. Electrospun Porous Nanofibers: Pore−Forming Mechanisms and Applications for Photocatalytic Degradation of Organic Pollutants in Wastewater. Polymers. 2022;14:3990. doi:10.3390/polym14193990. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

208. Bai Y., Liu Y., Lv H., Shi H., Zhou W., Liu Y., Yu D.-G. Processes of Electrospun Polyvinylidene Fluoride-Based Nanofibers, Their Piezoelectric Properties, and Several Fantastic Applications. Polymers. 2022;14:4311. doi:10.3390/polym14204311. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

209. Lv Q., Ma X., Zhang C., Han J., He S., Liu K., Jiang S. Nanocellulose-based nanogenerators for sensor applications: A review. Int. J. Biol. Macromol. 2024;259:129268. doi:10.1016/j.ijbiomac.2024.129268. [PubMed] [CrossRef] [Google Scholar]

210. Yu D.G., Zhou J. Electrospun Multi-Chamber Nanostructures for Sustainable Biobased Chemical Nanofibers. Next Mater. 2024;2:100119. doi:10.1016/j.nxmate.2024.100119. [CrossRef] [Google Scholar]

211. Li J., Du Q., Wan J., Yu D.-G., Tan F., Yang X. Improved synergistic anticancer action of quercetin and tamoxifen citrate supported by an electrospun complex nanostructure. Mater. Des. 2024;238:112657. doi:10.1016/j.matdes.2024.112657. [CrossRef] [Google Scholar]

Research Advances in Superabsorbent Polymers (2024)

FAQs

What are the side effects of super absorbent polymers? ›

When these chemicals are released into soil or water, they can harm plants, animals & humans. As superabsorbent polymers are designed to absorb liquid, this means they can also prevent water from reaching plant roots or natural water sources, this can have hugely negative impacts on ecosystems and water availability.

What are the advantages of superabsorbent polymers? ›

Unlike a sponge, in which water can be wrung out easily, the hydrated gel particles retain the absorbed water even under pressure. This unique ability to hold absorbed water, even against pressure, is the primary benefit of using superabsorbent polymers.

How superabsorbent polymers a potential solution for irrigation in agriculture? ›

SAPs having great water absorption capacity thus improve the moisture capacity of soil and plant will get appropriate amount of water, during the drought conditions, and between intervals of irrigation.

What is a superabsorbent polymer? ›

Superabsorbent polymers (SAPs) are materials that can absorb significant amounts of water relative to their mass. The nature and properties of SAPs make them a widely utilized material across many disciplines. A systematic review was conducted to examine the use of SAPs within agriculture and environmental science.

Is superabsorbent polymers safe? ›

The safety of superabsorbent polymers

Superabsorbents are safe for use in absorbent hygiene products. They have been extensively tested and researched. Scientists and doctors alike have reviewed the research and confirm that superabsorbent material is safe.

What happens if you eat super absorbent polymer? ›

Water beads contain superabsorbent polymers that can expand to hundreds of times their original size after exposure to water. These beads can cause life-threatening intestinal blockages if swallowed.

What are the natural super-absorbent polymers? ›

According to their source of origin, SAPs can be classified as natural and synthetic polymers. SAPs based on natural polymers, such as cellulose, starch and chitosan, have an obvious advantage of degradability.

What are superabsorbent polymers and their medical applications? ›

Superabsorbent polymers can also be prepared in fiber form by spinning or melt-stretching and can be used in medical dressings, hygiene products, filtration materials, etc.

What are the applications of superabsorbent polymer? ›

It has a wide area of application ranging from agriculture, forestry, industrial planting, municipal gardening, drought management, water conservation, It helps reduce soil erosion by surface run-offs, fertilizer and pesticide leaching to ground water, reducing cost of water and irrigation and success rate at growth ...

How much water can super absorbent polymer absorb? ›

The cross-links that connect the chains together prevent them from dissolving/breaking apart in the water. Sodium polyacrylate can absorb 800 times its weight in distilled water, but only 300 times its weight in tap water, since tap water contains some sodium, calcium and other mineral salts.

What is the effect of superabsorbent polymer on the properties of concrete? ›

The incorporation of SAP increases the porosity of concrete which may affect the durability of concrete. However, SAP with the absorption and desorption properties can change the water distribution in concrete.

What are the effects of superabsorbent polymers on soils and plants? ›

In specific, SAPs improve water penetration rate, structure and texture of soil (Helalia & Letey, 1988; Helalia & Letey, 1989), soil-water retention (Tayel & El- Hady, 1981), soil infiltration and aeration, size and number of aggregates, water tension, available water (Abedi Koupai et al., 2008), soil crispiness (Azzam ...

What is the history of superabsorbent polymers? ›

In the early 1970s, super absorbent polymer was used commercially for the first time – not for soil amendment applications as originally intended – but for disposable hygienic products. The first product markets were feminine sanitary napkins and adult incontinence products.

What is the raw material for superabsorbent polymer? ›

Acrylic acid is the main raw material for the production of superabsorbent polymers. Evonik produces acrylic acid in Marl (Germany) since 1991. Over the years the production plant has expanded to become one of the largest in the world.

Are superabsorbent polymers biodegradable? ›

This polymer is not biodegradable; the reason is that like poly(acrylic acid), poly(itaconic acid) obtained by a radical polymerization process also generating non-degradable carbon-carbon bonds in the main chains of the SAPs based thereon.

What are the harmful effects of polymers? ›

Polymers are not as toxic to people as the monomers they contain. But when cut, heated, or manipulated, polymers and their byproducts can release dangerous dust and vapors. Vinyl acetate in EVA may affect the heart, nervous system, and liver.

What are the side effects of sodium polyacrylate? ›

Toxicity: Sodium polyacrylate is generally considered non-toxic when used as intended. However, it can cause skin irritation or allergic reactions in some individuals. It is important to note that the amount of sodium polyacrylate used in sanitary pads is very small, and the risk of adverse effects is minimal.

How does sodium polyacrylate affect humans? ›

Small particles of sodium polyacrylate, if inhaled may irritate the airways, cause lung irritation with prolonged exposure [2]. The manufacturing process can create contaminants like acrylic acid, which is associated with skin burns, eye damage & skin corrosion [3].

How safe are organic polymers in water treatment? ›

... Despite that, such treatment leads to disposal problems as the sludge obtained after the treatment using aluminium salts risks accumulation in the environment [4]. At the same time, synthetic organic polymers like acrylamide possess carcinogenic and neurotoxic effects [5] .

Top Articles
Is My House Just Settling, or Do I Need Foundation Repair?
What is the 75/15/10 rule?
What Is Single Sign-on (SSO)? Meaning and How It Works? | Fortinet
Where To Go After Howling Pit Code Vein
Radikale Landküche am Landgut Schönwalde
Davita Internet
Yogabella Babysitter
How To Be A Reseller: Heather Hooks Is Hooked On Pickin’ - Seeking Connection: Life Is Like A Crossword Puzzle
Overnight Cleaner Jobs
DENVER Überwachungskamera IOC-221, IP, WLAN, außen | 580950
Craigslist Cars And Trucks Buffalo Ny
Gw2 Legendary Amulet
Nwi Police Blotter
13 The Musical Common Sense Media
Zoebaby222
More Apt To Complain Crossword
Los Angeles Craigs List
Craigslist Mpls Cars And Trucks
Les Schwab Product Code Lookup
2016 Ford Fusion Belt Diagram
Wilmot Science Training Program for Deaf High School Students Expands Across the U.S.
SXSW Film & TV Alumni Releases – July & August 2024
Boscov's Bus Trips
Air Quality Index Endicott Ny
Craigslist Wilkes Barre Pa Pets
Parkeren Emmen | Reserveren vanaf €9,25 per dag | Q-Park
What Equals 16
Mjc Financial Aid Phone Number
Miller Plonka Obituaries
Halsted Bus Tracker
Fox And Friends Mega Morning Deals July 2022
Goodwill Houston Select Stores Photos
Shih Tzu dogs for sale in Ireland
Stafford Rotoworld
Craigslist Lakeside Az
Busted Newspaper Campbell County KY Arrests
Samantha Lyne Wikipedia
2007 Jaguar XK Low Miles for sale - Palm Desert, CA - craigslist
The Conners Season 5 Wiki
Achieving and Maintaining 10% Body Fat
Promo Code Blackout Bingo 2023
John M. Oakey & Son Funeral Home And Crematory Obituaries
Swoop Amazon S3
Frequently Asked Questions
Samsung 9C8
Cvs Minute Clinic Women's Services
Hampton Inn Corbin Ky Bed Bugs
What Is The Gcf Of 44J5K4 And 121J2K6
Turning Obsidian into My Perfect Writing App – The Sweet Setup
Southern Blotting: Principle, Steps, Applications | Microbe Online
Latest Posts
Article information

Author: Kimberely Baumbach CPA

Last Updated:

Views: 6382

Rating: 4 / 5 (41 voted)

Reviews: 88% of readers found this page helpful

Author information

Name: Kimberely Baumbach CPA

Birthday: 1996-01-14

Address: 8381 Boyce Course, Imeldachester, ND 74681

Phone: +3571286597580

Job: Product Banking Analyst

Hobby: Cosplaying, Inline skating, Amateur radio, Baton twirling, Mountaineering, Flying, Archery

Introduction: My name is Kimberely Baumbach CPA, I am a gorgeous, bright, charming, encouraging, zealous, lively, good person who loves writing and wants to share my knowledge and understanding with you.