Structure, function, and pathology of Neurexin-3 (2024)

1. Südhof T.C. Neuroligins and neurexins link synaptic function to cognitive disease. Nature. 2008;455(7215):903–911. [PMC free article] [PubMed] [Google Scholar]

2. Poo M.M., Pignatelli M., Ryan T.J., et al. What is memory? The present state of the engram. BMC Biol. 2016;14:40. [PMC free article] [PubMed] [Google Scholar]

3. Peineau S., Rabiant K., Pierrefiche O., Potier B. Synaptic plasticity modulation by circulating peptides and metaplasticity: involvement in Alzheimer's disease. Pharmacol Res. 2018;130:385–401. [PubMed] [Google Scholar]

4. Chih B., Engelman H., Scheiffele P. Control of excitatory and inhibitory synapse formation by neuroligins. Science. 2005;307(5713):1324–1328. [PubMed] [Google Scholar]

5. Missaire M., Hindges R. The role of cell adhesion molecules in visual circuit formation: from neurite outgrowth to maps and synaptic specificity. Dev Neurobiol. 2015;75(6):569–583. [PMC free article] [PubMed] [Google Scholar]

6. Dong Z., Han H., Li H., et al. Long-term potentiation decay and memory loss are mediated by AMPAR endocytosis. J Clin Invest. 2015;125(1):234–247. [PMC free article] [PubMed] [Google Scholar]

7. Tabuchi K., Südhof T.C. Structure and evolution of neurexin genes: insight into the mechanism of alternative splicing. Genomics. 2002;79(6):849–859. [PubMed] [Google Scholar]

8. Harkin L.F., Lindsay S.J., Xu Y., et al. Neurexins 1-3 each have a distinct pattern of expression in the early developing human cerebral cortex. Cerebr Cortex. 2017;27(1):216–232. [PMC free article] [PubMed] [Google Scholar]

9. Ushkaryov Y.A., Petrenko A.G., Geppert M., Südhof T.C. Neurexins: synaptic cell surface proteins related to the alpha-latrotoxin receptor and laminin. Science. 1992;257(5066):50–56. [PubMed] [Google Scholar]

10. Occhi G., Rampazzo A., Beffa*gna G., Antonio Danieli G. Identification and characterization of heart-specific splicing of human neurexin 3 mRNA (NRXN3) Biochem Biophys Res Commun. 2002;298(1):151–155. [PubMed] [Google Scholar]

11. Ullrich B., Ushkaryov Y.A., Südhof T.C. Cartography of neurexins: more than 1000 isoforms generated by alternative splicing and expressed in distinct subsets of neurons. Neuron. 1995;14(3):497–507. [PubMed] [Google Scholar]

12. Bang M.L., Owczarek S. A matter of balance: role of neurexin and neuroligin at the synapse. Neurochem Res. 2013;38(6):1174–1189. [PubMed] [Google Scholar]

13. Sindi I.A., Tannenberg R.K., Dodd P.R. Role for the neurexin-neuroligin complex in Alzheimer's disease. Neurobiol Aging. 2014;35(4):746–756. [PubMed] [Google Scholar]

14. Ushkaryov Y.A., Südhof T.C. Neurexin III alpha: extensive alternative splicing generates membrane-bound and soluble forms. Proc Natl Acad Sci U S A. 1993;90(14):6410–6414. [PMC free article] [PubMed] [Google Scholar]

15. Sons M.S., Busche N., Strenzke N., et al. alpha-Neurexins are required for efficient transmitter release and synaptic homeostasis at the mouse neuromuscular junction. Neuroscience. 2006;138(2):433–446. [PubMed] [Google Scholar]

16. Bartels M.F., Winterhalter P.R., Yu J., et al. Protein O-mannosylation in the murine brain: occurrence of mono-O-mannosyl glycans and identification of new substrates. PLoS One. 2016;11(11):e0166119. [PMC free article] [PubMed] [Google Scholar]

17. Pandey H., Bourahmoune K., Honda T., et al. Genetic interaction of DISC1 and Neurexin in the development of fruit fly glutamatergic synapses. NPJ Schizophr. 2017;3(1):39. [PMC free article] [PubMed] [Google Scholar]

18. Banerjee S., Riordan M. Coordinated regulation of axonal microtubule organization and transport by Drosophila neurexin and BMP pathway. Sci Rep. 2018;8(1):17337. [PMC free article] [PubMed] [Google Scholar]

19. Craig A.M., Kang Y. Neurexin-neuroligin signaling in synapse development. Curr Opin Neurobiol. 2007;17(1):43–52. [PMC free article] [PubMed] [Google Scholar]

20. Roppongi R.T., Karimi B., Siddiqui T.J. Role of LRRTMs in synapse development and plasticity. Neurosci Res. 2017;116:18–28. [PubMed] [Google Scholar]

21. Gomez A.M., Traunmuller L., Scheiffele P. Neurexins: molecular codes for shaping neuronal synapses. Nat Rev Neurosci. 2021;22(3):137–151. [PMC free article] [PubMed] [Google Scholar]

22. Graf E.R., Zhang X., Jin S.X., Linhoff M.W., Craig A.M. Neurexins induce differentiation of GABA and glutamate postsynaptic specializations via neuroligins. Cell. 2004;119(7):1013–1026. [PMC free article] [PubMed] [Google Scholar]

23. Karki S., Maksimainen M.M., Lehtiö L., Kajander T. Inhibitor screening assay for neurexin-LRRTM adhesion protein interaction involved in synaptic maintenance and neurological disorders. Anal Biochem. 2019;587:113463. [PubMed] [Google Scholar]

24. Liouta K., Chabbert J., Benquet S., et al. Role of regulatory C-terminal motifs in synaptic confinement of LRRTM2. Biol Cell. 2021;113(12):492–506. [PubMed] [Google Scholar]

25. Ko J., Fuccillo M.V., Malenka R.C., Südhof T.C. LRRTM2 functions as a neurexin ligand in promoting excitatory synapse formation. Neuron. 2009;64(6):791–798. [PMC free article] [PubMed] [Google Scholar]

26. Minatohara K., Murata Y., Fujiyoshi Y., Doi T. An intracellular domain with a novel sequence regulates cell surface expression and synaptic clustering of leucine-rich repeat transmembrane proteins in hippocampal neurons. J Neurochem. 2015;134(4):618–628. [PubMed] [Google Scholar]

27. Linhoff M.W., Laurén J., Cassidy R.M., et al. An unbiased expression screen for synaptogenic proteins identifies the LRRTM protein family as synaptic organizers. Neuron. 2009;61(5):734–749. [PMC free article] [PubMed] [Google Scholar]

28. Siddiqui T.J., Pancaroglu R., Kang Y., Rooyakkers A., Craig A.M. LRRTMs and neuroligins bind neurexins with a differential code to cooperate in glutamate synapse development. J Neurosci. 2010;30(22):7495–7506. [PMC free article] [PubMed] [Google Scholar]

29. Siddiqui T.J., Tari P.K., Connor S.A., et al. An LRRTM4-HSPG complex mediates excitatory synapse development on dentate gyrus granule cells. Neuron. 2013;79(4):680–695. [PubMed] [Google Scholar]

30. Soler-Llavina G.J., Arstikaitis P., Morish*ta W., Ahmad M., Südhof T.C., Malenka R.C. Leucine-rich repeat transmembrane proteins are essential for maintenance of long-term potentiation. Neuron. 2013;79(3):439–446. [PMC free article] [PubMed] [Google Scholar]

31. Um J.W., Choi T.Y., Kang H., et al. LRRTM3 regulates excitatory synapse development through alternative splicing and neurexin binding. Cell Rep. 2016;14(4):808–822. [PubMed] [Google Scholar]

32. Ludwig K.U., Mattheisen M., Mühleisen T.W., et al. Supporting evidence for LRRTM1 imprinting effects in schizophrenia. Mol Psychiatr. 2009;14(8):743–745. [PubMed] [Google Scholar]

33. Malhotra D., McCarthy S., Michaelson J.J., et al. High frequencies of de novo CNVs in bipolar disorder and schizophrenia. Neuron. 2011;72(6):951–963. [PMC free article] [PubMed] [Google Scholar]

34. Cuttler K., Hassan M., Carr J., Cloete R., Bardien S. Emerging evidence implicating a role for neurexins in neurodegenerative and neuropsychiatric disorders. Open Biol. 2021;11(10):210091. [PMC free article] [PubMed] [Google Scholar]

35. Soler-Llavina G.J., Fuccillo M.V., Ko J., Südhof T.C., Malenka R.C. The neurexin ligands, neuroligins and leucine-rich repeat transmembrane proteins, perform convergent and divergent synaptic functions invivo. Proc Natl Acad Sci U S A. 2011;108(40):16502–16509. [PMC free article] [PubMed] [Google Scholar]

36. Ko J., Soler-Llavina G.J., Fuccillo M.V., Malenka R.C., Südhof T.C. Neuroligins/LRRTMs prevent activity- and Ca2+/calmodulin-dependent synapse elimination in cultured neurons. J Cell Biol. 2011;194(2):323–334. [PMC free article] [PubMed] [Google Scholar]

37. Dagar S., Gottmann K. Differential properties of the synaptogenic activities of the neurexin ligands Neuroligin1 and LRRTM2. Front Mol Neurosci. 2019;12:269. [PMC free article] [PubMed] [Google Scholar]

38. Südhof T.C. Synaptic neurexin complexes: a molecular code for the logic of neural circuits. Cell. 2017;171(4):745–769. [PMC free article] [PubMed] [Google Scholar]

39. Nguyen T., Südhof T.C. Binding properties of neuroligin 1 and neurexin 1beta reveal function as heterophilic cell adhesion molecules. J Biol Chem. 1997;272(41):26032–26039. [PubMed] [Google Scholar]

40. Ichtchenko K., Nguyen T., Südhof T.C. Structures, alternative splicing, and neurexin binding of multiple neuroligins. J Biol Chem. 1996;271(5):2676–2682. [PubMed] [Google Scholar]

41. Ylisaukko-oja T., Rehnström K., Auranen M., et al. Analysis of four neuroligin genes as candidates for autism. Eur J Hum Genet. 2005;13(12):1285–1292. [PubMed] [Google Scholar]

42. Song J.Y., Ichtchenko K., Südhof T.C., Brose N. Neuroligin 1 is a postsynaptic cell-adhesion molecule of excitatory synapses. Proc Natl Acad Sci U S A. 1999;96(3):1100–1105. [PMC free article] [PubMed] [Google Scholar]

43. Poulopoulos A., Aramuni G., Meyer G., et al. Neuroligin 2 drives postsynaptic assembly at perisomatic inhibitory synapses through gephyrin and collybistin. Neuron. 2009;63(5):628–642. [PubMed] [Google Scholar]

44. Takács V.T., Freund T.F., Nyiri G. Neuroligin 2 is expressed in synapses established by cholinergic cells in the mouse brain. PLoS One. 2013;8(9):e72450. [PMC free article] [PubMed] [Google Scholar]

45. Uchigashima M., Ohtsuka T., Kobayashi K., Watanabe M. Dopamine synapse is a neuroligin-2-mediated contact between dopaminergic presynaptic and GABAergic postsynaptic structures. Proc Natl Acad Sci U S A. 2016;113(15):4206–4211. [PMC free article] [PubMed] [Google Scholar]

46. Uchigashima M., Cheung A., Futai K. Neuroligin-3: a circuit-specific synapse organizer that shapes normal function and autism spectrum disorder-associated dysfunction. Front Mol Neurosci. 2021;14:749164. [PMC free article] [PubMed] [Google Scholar]

47. Hoon M., Soykan T., Falkenburger B., et al. Neuroligin-4 is localized to glycinergic postsynapses and regulates inhibition in the retina. Proc Natl Acad Sci U S A. 2011;108(7):3053–3058. [PMC free article] [PubMed] [Google Scholar]

48. Bolliger M.F., Frei K., Winterhalter K.H., Gloor S.M. Identification of a novel neuroligin in humans which binds to PSD-95 and has a widespread expression. Biochem J. 2001;356(Pt 2):581–588. [PMC free article] [PubMed] [Google Scholar]

49. Varoqueaux F., Jamain S., Brose N. Neuroligin 2 is exclusively localized to inhibitory synapses. Eur J Cell Biol. 2004;83(9):449–456. [PubMed] [Google Scholar]

50. Chubykin A.A., Atasoy D., Etherton M.R., et al. Activity-dependent validation of excitatory versus inhibitory synapses by neuroligin-1 versus neuroligin-2. Neuron. 2007;54(6):919–931. [PMC free article] [PubMed] [Google Scholar]

51. Chanda S., Hale W.D., Zhang B., Wernig M., Südhof T.C. Unique versus redundant functions of neuroligin genes in shaping excitatory and inhibitory synapse properties. J Neurosci. 2017;37(29):6816–6836. [PMC free article] [PubMed] [Google Scholar]

52. Jiang M., Polepalli J., Chen L.Y., Zhang B., Südhof T.C., Malenka R.C. Conditional ablation of neuroligin-1 in CA1 pyramidal neurons blocks LTP by a cell-autonomous NMDA receptor-independent mechanism. Mol Psychiatr. 2017;22(3):375–383. [PMC free article] [PubMed] [Google Scholar]

53. Hines R.M., Wu L., Hines D.J., et al. Synaptic imbalance, stereotypies, and impaired social interactions in mice with altered neuroligin 2 expression. J Neurosci. 2008;28(24):6055–6067. [PMC free article] [PubMed] [Google Scholar]

54. Zhang B., Chen L.Y., Liu X., et al. Neuroligins sculpt cerebellar Purkinje-cell circuits by differential control of distinct classes of synapses. Neuron. 2015;87(4):781–796. [PMC free article] [PubMed] [Google Scholar]

55. Aoto J., Martinelli D.C., Malenka R.C., Tabuchi K., Südhof T.C. Presynaptic neurexin-3 alternative splicing trans-synaptically controls postsynaptic AMPA receptor trafficking. Cell. 2013;154(1):75–88. [PMC free article] [PubMed] [Google Scholar]

56. Aoto J., Földy C., Ilcus S.M., Tabuchi K., Südhof T.C. Distinct circuit-dependent functions of presynaptic neurexin-3 at GABAergic and glutamatergic synapses. Nat Neurosci. 2015;18(7):997–1007. [PMC free article] [PubMed] [Google Scholar]

57. Nam C.I., Chen L. Postsynaptic assembly induced by neurexin-neuroligin interaction and neurotransmitter. Proc Natl Acad Sci U S A. 2005;102(17):6137–6142. [PMC free article] [PubMed] [Google Scholar]

58. Hollmann M., Maron C., Heinemann S. N-glycosylation site tagging suggests a three transmembrane domain topology for the glutamate receptor GluR1. Neuron. 1994;13(6):1331–1343. [PubMed] [Google Scholar]

59. Shepherd J.D., Huganir R.L. The cell biology of synaptic plasticity: AMPA receptor trafficking. Annu Rev Cell Dev Biol. 2007;23:613–643. [PubMed] [Google Scholar]

60. Bassani S., Folci A., Zapata J., Passafaro M. AMPAR trafficking in synapse maturation and plasticity. Cell Mol Life Sci. 2013;70(23):4411–4430. [PMC free article] [PubMed] [Google Scholar]

61. Ashby M.C., De La Rue S.A., Ralph G.S., Uney J., Collingridge G.L., Henley J.M. Removal of AMPA receptors (AMPARs) from synapses is preceded by transient endocytosis of extrasynaptic AMPARs. J Neurosci. 2004;24(22):5172–5176. [PMC free article] [PubMed] [Google Scholar]

62. Kakegawa W., Katoh A., Narumi S., et al. Optogenetic control of synaptic AMPA receptor endocytosis reveals roles of LTD in motor learning. Neuron. 2018;99(5):985–998. [PubMed] [Google Scholar]

63. Awasthi A., Ramachandran B., Ahmed S., et al. Synaptotagmin-3 drives AMPA receptor endocytosis, depression of synapse strength, and forgetting. Science. 2019;363(6422):eaav1483. [PubMed] [Google Scholar]

64. Teravskis P.J., Covelo A., Miller E.C., et al. A53T mutant alpha-synuclein induces tau-dependent postsynaptic impairment independently of neurodegenerative changes. J Neurosci. 2018;38(45):9754–9767. [PMC free article] [PubMed] [Google Scholar]

65. Boucard A.A., Chubykin A.A., Comoletti D., Taylor P., Südhof T.C. A splice code for trans-synaptic cell adhesion mediated by binding of neuroligin 1 to alpha- and beta-neurexins. Neuron. 2005;48(2):229–236. [PubMed] [Google Scholar]

66. Irie M., Hata Y., Takeuchi M., et al. Binding of neuroligins to PSD-95. Science. 1997;277(5331):1511–1515. [PubMed] [Google Scholar]

67. Coley A.A., Gao W.J. PSD95: a synaptic protein implicated in schizophrenia or autism? Prog Neuro-Psychopharmacol Biol Psychiatry. 2018;82:187–194. [PMC free article] [PubMed] [Google Scholar]

68. Ichtchenko K., Hata Y., Nguyen T., et al. Neuroligin 1: a splice site-specific ligand for beta-neurexins. Cell. 1995;81(3):435–443. [PubMed] [Google Scholar]

69. Dai J., Aoto J., Südhof T.C. Alternative splicing of presynaptic neurexins differentially controls postsynaptic NMDA and AMPA receptor responses. Neuron. 2019;102(5):993–1008. [PMC free article] [PubMed] [Google Scholar]

70. Bormann J. ‘The ABC’ of GABA receptors. Trends Pharmacol Sci. 2000;21(1):16–19. [PubMed] [Google Scholar]

71. Wu X., Wu Z., Ning G., et al. γ-Aminobutyric acid type A (GABAA) receptor α subunits play a direct role in synaptic versus extrasynaptic targeting. J Biol Chem. 2012;287(33):27417–27430. [PMC free article] [PubMed] [Google Scholar]

72. Luscher B., Fuchs T., Kilpatrick C.L. GABAA receptor trafficking-mediated plasticity of inhibitory synapses. Neuron. 2011;70(3):385–409. [PMC free article] [PubMed] [Google Scholar]

73. Schmidt M.J., Mirnics K. Neurodevelopment, GABA system dysfunction, and schizophrenia. Neuropsychopharmacology. 2015;40(1):190–206. [PMC free article] [PubMed] [Google Scholar]

74. Kadoyama K., Matsuura K., Takano M., et al. Proteomic analysis involved with synaptic plasticity improvement by GABAA receptor blockade in hippocampus of a mouse model of Alzheimer's disease. Neurosci Res. 2021;165:61–68. [PubMed] [Google Scholar]

75. Ali H., Marth L., Krueger-Burg D. Neuroligin-2 as a central organizer of inhibitory synapses in health and disease. Sci Signal. 2020;13(663):eabd8379. [PubMed] [Google Scholar]

76. Kins S., Betz H., Kirsch J. Collybistin, a newly identified brain-specific GEF, induces submembrane clustering of gephyrin. Nat Neurosci. 2000;3(1):22–29. [PubMed] [Google Scholar]

77. Harvey K., Duguid I.C., Alldred M.J., et al. The GDP-GTP exchange factor collybistin: an essential determinant of neuronal gephyrin clustering. J Neurosci. 2004;24(25):5816–5826. [PMC free article] [PubMed] [Google Scholar]

78. Kalscheuer V.M., Musante L., Fang C., et al. A balanced chromosomal translocation disrupting ARHGEF9 is associated with epilepsy, anxiety, aggression, and mental retardation. Hum Mutat. 2009;30(1):61–68. [PMC free article] [PubMed] [Google Scholar]

79. Prior P., Schmitt B., Grenningloh G., et al. Primary structure and alternative splice variants of gephyrin, a putative glycine receptor-tubulin linker protein. Neuron. 1992;8(6):1161–1170. [PubMed] [Google Scholar]

80. Essrich C., Lorez M., Benson J.A., Fritschy J.M., Lüscher B. Postsynaptic clustering of major GABAA receptor subtypes requires the gamma 2 subunit and gephyrin. Nat Neurosci. 1998;1(7):563–571. [PubMed] [Google Scholar]

81. Feng G., Tintrup H., Kirsch J., et al. Dual requirement for gephyrin in glycine receptor clustering and molybdoenzyme activity. Science. 1998;282(5392):1321–1324. [PubMed] [Google Scholar]

82. Moss S.J., Smart T.G. Constructing inhibitory synapses. Nat Rev Neurosci. 2001;2(4):240–250. [PubMed] [Google Scholar]

83. Zhang C., Atasoy D., Araç D., et al. Neurexins physically and functionally interact with GABA(A) receptors. Neuron. 2010;66(3):403–416. [PMC free article] [PubMed] [Google Scholar]

84. Miyazaki T., Morimoto-Tomita M., Berthoux C., et al. Excitatory and inhibitory receptors utilize distinct post- and trans-synaptic mechanisms invivo. Elife. 2021;10:e59613. [PMC free article] [PubMed] [Google Scholar]

85. Hsueh Y.P. The role of the MAGUK protein CASK in neural development and synaptic function. Curr Med Chem. 2006;13(16):1915–1927. [PubMed] [Google Scholar]

86. Hata Y., Butz S., Südhof T.C. CASK: a novel dlg/PSD95 hom*olog with an N-terminal calmodulin-dependent protein kinase domain identified by interaction with neurexins. J Neurosci. 1996;16(8):2488–2494. [PMC free article] [PubMed] [Google Scholar]

87. Butz S., Okamoto M., Südhof T.C. A tripartite protein complex with the potential to couple synaptic vesicle exocytosis to cell adhesion in brain. Cell. 1998;94(6):773–782. [PubMed] [Google Scholar]

88. Biederer T., Südhof T.C. Mints as adaptors. Direct binding to neurexins and recruitment of munc18. J Biol Chem. 2000;275(51):39803–39806. [PubMed] [Google Scholar]

89. Seigneur E., Wang J., Dai J., Polepalli J., Südhof T.C. Cerebellin-2 regulates a serotonergic dorsal raphe circuit that controls compulsive behaviors. Mol Psychiatr. 2021;26(12):7509–7521. [PMC free article] [PubMed] [Google Scholar]

90. Dai J., Patzke C., Liakath-Ali K., Seigneur E., Südhof T.C. GluD1 is a signal transduction device disguised as an ionotropic receptor. Nature. 2021;595(7866):261–265. [PMC free article] [PubMed] [Google Scholar]

91. Monteiro P., Feng G. SHANK proteins: roles at the synapse and in autism spectrum disorder. Nat Rev Neurosci. 2017;18(3):147–157. [PubMed] [Google Scholar]

92. Roberts S., Delury C., Marsh E. The PDZ protein discs-large (DLG): the ‘Jekyll and Hyde' of the epithelial polarity proteins. FEBS J. 2012;279(19):3549–3558. [PubMed] [Google Scholar]

93. Anderson G.R., Aoto J., Tabuchi K., et al. β-Neurexins control neural circuits by regulating synaptic endocannabinoid signaling. Cell. 2015;162(3):593–606. [PMC free article] [PubMed] [Google Scholar]

94. Missler M., Zhang W., Rohlmann A., et al. Alpha-neurexins couple Ca2+ channels to synaptic vesicle exocytosis. Nature. 2003;423(6943):939–948. [PubMed] [Google Scholar]

95. Matsuda K., Budisantoso T., Mitakidis N., et al. Transsynaptic modulation of kainate receptor functions by C1q-like proteins. Neuron. 2016;90(4):752–767. [PubMed] [Google Scholar]

96. Luo F., Sclip A., Merrill S., Südhof T.C. Neurexins regulate presynaptic GABAB-receptors at central synapses. Nat Commun. 2021;12(1):2380. [PMC free article] [PubMed] [Google Scholar]

97. Celone K.A., Calhoun V.D., Dickerson B.C., et al. Alterations in memory networks in mild cognitive impairment and Alzheimer's disease: an independent component analysis. J Neurosci. 2006;26(40):10222–10231. [PMC free article] [PubMed] [Google Scholar]

98. Xu Y., Zhao M., Han Y., Zhang H. GABAergic inhibitory interneuron deficits in Alzheimer's disease: implications for treatment. Front Neurosci. 2020;14:660. [PMC free article] [PubMed] [Google Scholar]

99. Yu J., Cho E., Kwon H., et al. Akt and calcium-permeable AMPA receptor are involved in the effect of pinoresinol on amyloid beta-induced synaptic plasticity and memory deficits. Biochem Pharmacol. 2021;184:114366. [PubMed] [Google Scholar]

100. Perdahl E., Adolfsson R., Alafuzoff I., et al. Synapsin I (protein I) in different brain regions in senile dementia of Alzheimer type and in multi-infarct dementia. J Neural Transm. 1984;60(2):133–141. [PubMed] [Google Scholar]

101. Honer W.G., Dickson D.W., Gleeson J., Davies P. Regional synaptic pathology in Alzheimer's disease. Neurobiol Aging. 1992;13(3):375–382. [PubMed] [Google Scholar]

102. Bancher C., Braak H., Fischer P., Jellinger K.A. Neuropathological staging of Alzheimer lesions and intellectual status in Alzheimer's and Parkinson's disease patients. Neurosci Lett. 1993;162(1–2):179–182. [PubMed] [Google Scholar]

103. Sze C.I., Troncoso J.C., Kawas C., Mouton P., Price D.L., Martin L.J. Loss of the presynaptic vesicle protein synaptophysin in hippocampus correlates with cognitive decline in Alzheimer disease. J Neuropathol Exp Neurol. 1997;56(8):933–944. [PubMed] [Google Scholar]

104. Lassmann H., Weiler R., Fischer P., et al. Synaptic pathology in Alzheimer's disease: immunological data for markers of synaptic and large dense-core vesicles. Neuroscience. 1992;46(1):1–8. [PubMed] [Google Scholar]

105. Tannenberg R.K., Scott H.L., Tannenberg A.E., Dodd P.R. Selective loss of synaptic proteins in Alzheimer's disease: evidence for an increased severity with APOE varepsilon4. Neurochem Int. 2006;49(7):631–639. [PubMed] [Google Scholar]

106. Brinkmalm G., Sjödin S., Simonsen A.H., et al. A parallel reaction monitoring mass spectrometric method for analysis of potential CSF biomarkers for Alzheimer's disease. Proteonomics Clin Appl. 2018;12(1):e1700131. [PubMed] [Google Scholar]

107. Duits F.H., Brinkmalm G., Teunissen C.E., et al. Synaptic proteins in CSF as potential novel biomarkers for prognosis in prodromal Alzheimer's disease. Alzheimer's Res Ther. 2018;10(1):5. [PMC free article] [PubMed] [Google Scholar]

108. Lleó A., Núñez-Llaves R., Alcolea D., et al. Changes in synaptic proteins precede neurodegeneration markers in preclinical Alzheimer's disease cerebrospinal fluid. Mol Cell Proteomics. 2019;18(3):546–560. [PMC free article] [PubMed] [Google Scholar]

109. Dufort-Gervais J., Provost C., Charbonneau L., et al. Neuroligin-1 is altered in the hippocampus of Alzheimer's disease patients and mouse models, and modulates the toxicity of amyloid-beta oligomers. Sci Rep. 2020;10(1):6956. [PMC free article] [PubMed] [Google Scholar]

110. Bie B., Wu J., Yang H., Xu J.J., Brown D.L., Naguib M. Epigenetic suppression of neuroligin 1 underlies amyloid-induced memory deficiency. Nat Neurosci. 2014;17(2):223–231. [PubMed] [Google Scholar]

111. Martinez-Mir A., González-Pérez A., Gayán J., et al. Genetic study of neurexin and neuroligin genes in Alzheimer's disease. J Alzheim Dis. 2013;35(2):403–412. [PubMed] [Google Scholar]

112. Bot N., Schweizer C., Ben Halima S., Fraering P.C. Processing of the synaptic cell adhesion molecule neurexin-3beta by Alzheimer disease alpha- and gamma-secretases. J Biol Chem. 2011;286(4):2762–2773. [PMC free article] [PubMed] [Google Scholar]

113. Saura C.A., Servián-Morilla E., Scholl F.G. Presenilin/γ-secretase regulates neurexin processing at synapses. PLoS One. 2011;6(4):e19430. [PMC free article] [PubMed] [Google Scholar]

114. Nestler E.J. Is there a common molecular pathway for addiction? Nat Neurosci. 2005;8(11):1445–1449. [PubMed] [Google Scholar]

115. Liu Q.R., Drgon T., Johnson C., Walther D., Hess J., Uhl G.R. Addiction molecular genetics: 639,401 SNP whole genome association identifies many "cell adhesion" genes. Am J Med Genet B Neuropsychiatr Genet. 2006;141B(8):918–925. [PubMed] [Google Scholar]

116. Liu Q.R., Drgon T., Walther D., et al. Pooled association genome scanning: validation and use to identify addiction vulnerability loci in two samples. Proc Natl Acad Sci U S A. 2005;102(33):11864–11869. [PMC free article] [PubMed] [Google Scholar]

117. Novak G., Boukhadra J., Shaikh S.A., Kennedy J.L., Le Foll B. Association of a polymorphism in the NRXN3 gene with the degree of smoking in schizophrenia: a preliminary study. World J Biol Psychiatr. 2009;10(4 Pt 3):929–935. [PubMed] [Google Scholar]

118. Sasabe T., Ishiura S. Alcoholism and alternative splicing of candidate genes. Int J Environ Res Publ Health. 2010;7(4):1448–1466. [PMC free article] [PubMed] [Google Scholar]

119. Lein E.S., Hawrylycz M.J., Ao N., et al. Genome-wide atlas of gene expression in the adult mouse brain. Nature. 2007;445(7124):168–176. [PubMed] [Google Scholar]

120. Lachman H.M., Fann C.S., Bartzis M., et al. Genomewide suggestive linkage of opioid dependence to chromosome 14q. Hum Mol Genet. 2007;16(11):1327–1334. [PubMed] [Google Scholar]

121. Kelai S., Maussion G., Noble F., et al. Nrxn3 upregulation in the globus pallidus of mice developing cocaine addiction. Neuroreport. 2008;19(7):751–755. [PMC free article] [PubMed] [Google Scholar]

122. Wolock S.L., Yates A., Petrill S.A., et al. Gene x smoking interactions on human brain gene expression: finding common mechanisms in adolescents and adults. J Child Psychol Psychiatry. 2013;54(10):1109–1119. [PMC free article] [PubMed] [Google Scholar]

123. Güleç G., Coşan D.T., Şahin F.M., et al. Association of nicotine use disorder with Neurexin 3 gene polymorphisms. Türk Psikiyatri Derg. 2021;32(3):160–166. [PubMed] [Google Scholar]

124. Docampo E., Ribasés M., Gratacòs M., et al. Association of neurexin 3 polymorphisms with smoking behavior. Gene Brain Behav. 2012;11(6):704–711. [PubMed] [Google Scholar]

125. Charness M.E., Safran R.M., Perides G. Ethanol inhibits neural cell-cell adhesion. J Biol Chem. 1994;269(12):9304–9309. [PubMed] [Google Scholar]

126. Hishimoto A., Liu Q.R., Drgon T., et al. Neurexin 3 polymorphisms are associated with alcohol dependence and altered expression of specific isoforms. Hum Mol Genet. 2007;16(23):2880–2891. [PubMed] [Google Scholar]

127. Stoltenberg S.F., Lehmann M.K., Christ C.C., Hersrud S.L., Davies G.E. Associations among types of impulsivity, substance use problems and neurexin-3 polymorphisms. Drug Alcohol Depend. 2011;119(3):e31–e38. [PMC free article] [PubMed] [Google Scholar]

128. Autism Genome Project Consortium. Szatmari P., Paterson A.D., et al. Mapping autism risk loci using genetic linkage and chromosomal rearrangements. Nat Genet. 2007;39(3):319–328. [PMC free article] [PubMed] [Google Scholar]

129. Chakrabarti S., Fombonne E. Pervasive developmental disorders in preschool children: confirmation of high prevalence. Am J Psychiatr. 2005;162(6):1133–1141. [PubMed] [Google Scholar]

130. Vaags A.K., Lionel A.C., Sato D., et al. Rare deletions at the neurexin 3 locus in autism spectrum disorder. Am J Hum Genet. 2012;90(1):133–141. [PMC free article] [PubMed] [Google Scholar]

131. Yuan H., Wang Q., Liu Y., et al. A rare exonic NRXN3 deletion segregating with neurodevelopmental and neuropsychiatric conditions in a three-generation Chinese family. Am J Med Genet B Neuropsychiatr Genet. 2018;177(6):589–595. [PMC free article] [PubMed] [Google Scholar]

132. Hu X., Zhang J., Jin C., et al. Association study of NRXN3 polymorphisms with schizophrenia and risperidone-induced bodyweight gain in Chinese Han population. Prog Neuro-Psychopharmacol Biol Psychiatry. 2013;43:197–202. [PubMed] [Google Scholar]

133. Guedes B.F., Ribeiro A.F., Pinto L.F., et al. Potential autoimmune encephalitis following yellow fever vaccination: a report of three cases. J Neuroimmunol. 2021;355:577548. [PubMed] [Google Scholar]

134. Al Shweiki M.R., Oeckl P., Steinacker P., et al. Proteomic analysis reveals a biosignature of decreased synaptic protein in cerebrospinal fluid of major depressive disorder. Transl Psychiatry. 2020;10(1):144. [PMC free article] [PubMed] [Google Scholar]

135. Li W., Zhang Y., Gu R., et al. DNA pooling base genome-wide association study identifies variants at NRXN3 associated with delayed encephalopathy after acute carbon monoxide poisoning. PLoS One. 2013;8(11):e79159. [PMC free article] [PubMed] [Google Scholar]

136. Panagopoulos V.N., Trull T.J., Glowinski A.L., et al. Examining the association of NRXN3 SNPs with borderline personality disorder phenotypes in heroin dependent cases and socio-economically disadvantaged controls. Drug Alcohol Depend. 2013;128(3):187–193. [PMC free article] [PubMed] [Google Scholar]

137. Zarrilli F., Tomaiuolo R., Ceglia C., et al. Molecular analysis of cluster headache. Clin J Pain. 2015;31(1):52–57. [PubMed] [Google Scholar]

138. Marchese E., Valentini M., Di Sante G., et al. Alternative splicing of neurexins 1-3 is modulated by neuroinflammation in the prefrontal cortex of a murine model of multiple sclerosis. Exp Neurol. 2021;335:113497. [PubMed] [Google Scholar]

139. Liu L., Zhang P., Dong X., et al. Circ_0001367 inhibits glioma proliferation, migration and invasion by sponging miR-431 and thus regulating NRXN3. Cell Death Dis. 2021;12(6):536. [PMC free article] [PubMed] [Google Scholar]

140. Keum S., Kim A., Shin J.J., Kim J.H., Park J., Shin H.S. A missense variant at the Nrxn3 locus enhances empathy fear in the mouse. Neuron. 2018;98(3):588–601. [PubMed] [Google Scholar]

141. Sun H.B., Yokota H., Chi X.X., Xu Z.C. Differential expression of neurexin mRNA in CA1 and CA3 hippocampal neurons in response to ischemic insult. Brain Res Mol Brain Res. 2000;84(1–2):146–149. [PubMed] [Google Scholar]

Structure, function, and pathology of Neurexin-3 (2024)
Top Articles
Can I Use My 403(b) To Buy a House? | Finance Strategists
Elegant White Quartz Countertops for a Modern Kitchen
The Blackening Showtimes Near Century Aurora And Xd
No Hard Feelings (2023) Tickets & Showtimes
It's Official: Sabrina Carpenter's Bangs Are Taking Over TikTok
Promotional Code For Spades Royale
El Paso Pet Craigslist
Algebra Calculator Mathway
What Was D-Day Weegy
Violent Night Showtimes Near Amc Fashion Valley 18
Midway Antique Mall Consignor Access
Over70Dating Login
Bbc 5Live Schedule
Campaign Homecoming Queen Posters
[2024] How to watch Sound of Freedom on Hulu
Large storage units
The Rise of Breckie Hill: How She Became a Social Media Star | Entertainment
Enderal:Ausrüstung – Sureai
Echo & the Bunnymen - Lips Like Sugar Lyrics
Non Sequitur
Kvta Ventura News
Bnsf.com/Workforce Hub
Does Breckie Hill Have An Only Fans – Repeat Replay
Xxn Abbreviation List 2023
Apply for a credit card
Account Suspended
Ceramic tiles vs vitrified tiles: Which one should you choose? - Building And Interiors
Craigslistodessa
Amelia Chase Bank Murder
R/Airforcerecruits
1636 Pokemon Fire Red U Squirrels Download
Ice Dodo Unblocked 76
Craigslist Middletown Ohio
3473372961
Newcardapply Com 21961
Gas Prices In Henderson Kentucky
Exploring The Whimsical World Of JellybeansBrains Only
Louisville Volleyball Team Leaks
Ludvigsen Mortuary Fremont Nebraska
craigslist | michigan
Alpha Labs Male Enhancement – Complete Reviews And Guide
8776725837
Sechrest Davis Funeral Home High Point Nc
Reilly Auto Parts Store Hours
Bmp 202 Blue Round Pill
705 Us 74 Bus Rockingham Nc
A Man Called Otto Showtimes Near Cinemark Greeley Mall
Wood River, IL Homes for Sale & Real Estate
Freightliner Cascadia Clutch Replacement Cost
Minecraft Enchantment Calculator - calculattor.com
O'reilly's Eastman Georgia
Latest Posts
Article information

Author: Lidia Grady

Last Updated:

Views: 5679

Rating: 4.4 / 5 (45 voted)

Reviews: 92% of readers found this page helpful

Author information

Name: Lidia Grady

Birthday: 1992-01-22

Address: Suite 493 356 Dale Fall, New Wanda, RI 52485

Phone: +29914464387516

Job: Customer Engineer

Hobby: Cryptography, Writing, Dowsing, Stand-up comedy, Calligraphy, Web surfing, Ghost hunting

Introduction: My name is Lidia Grady, I am a thankful, fine, glamorous, lucky, lively, pleasant, shiny person who loves writing and wants to share my knowledge and understanding with you.